This repo provides supporting code for the paper:
Lidar Panoptic Segmentation in an Open World. IJCV 2024. Anirudh S Chakravarthy, Meghana Reddy Ganesina, Peiyun Hu, Laura Leal-Taixé, Shu Kong, Deva Ramanan, and Aljosa Osep.
This code builds on the PyTorch implementation of 4D-PLS. Below, we provide instructions to train and evaluate our method, OWL.
Usage:
python scripts/train_TS1.sh
Usage:
sh scripts/test.sh -t 1 -p 4DPLS_TS1 -e "EXPERIMENT_NAME"
One can also optionally specify GPU ID using the -g
flag.
To generate confusion and extended confusion matrix, run the following command:
python evaluate_conf_matrix.py -t 0 -p ../project_data/ramanan/achakrav/4D-PLS/results/4DPLS_TS0
First, go to the semantic-kitti-api
repo.
Then, generate per-frame visualizations using the following command:
python visualize.py -d ../data/SemanticKitti/ -t 1 -c ../data/SemanticKitti/semantic-kitti.yaml -s 08 -p ../results/predictions/TS1 -di --visu 1 -sd ../results/visualizations/trk_valid_vis/TS1
Then, go to the directory where png files are saved.
cd ../results/visualizations/trk_valid_vis/TS1/1_pred_TS1
Finally, run the following command:
ffmpeg -r 10 -i %d.png -vf scale=1620:1080 -vframes 500 ../1_pred_TS1.mp4
NOTE: For ffmpeg commands, refer to this link.
Run evaluation on a given task set using the following command:
sh scripts/test_kitti360.sh -t 1 -p 4DPLS_TS1 -e "EXPERIMENT_NAME"
If you wish to evaluate on multiple sequences (currently fixed to sequence 2), change L142 to the appropriate sequence.
First, go to the semantic-kitti-api
repo.
Then, generate per-frame visualizations using the following command:
python visualize_kitti360.py -d ../data/Kitti360/ -t 1 -c ../data/Kitti360/kitti-360.yaml -s 02 -p ../results/predictions/Kitti360/TS1 -di --visu 1 -sd ../results/visualizations/trk_valid_vis/Kitti360/TS1
Then, go to the directory where png files are saved.
cd ../results/visualizations/trk_valid_vis/Kitti360/TS1/1_pred_TS1/
Finally, run the following command:
ffmpeg -r 10 -i %d.png -vf scale=1620:1080 -vframes 500 ../1_pred_TS1.mp4
If you find our code useful, please consider citing our paper:
@article{chakravarthy2024lidar,
title={Lidar Panoptic Segmentation in an Open World},
author={Chakravarthy, Anirudh S and Ganesina, Meghana Reddy and Hu, Peiyun and Leal-Taix{\'e}, Laura and Kong, Shu and Ramanan, Deva and Osep, Aljosa},
journal={International Journal of Computer Vision},
pages={1--22},
year={2024},
publisher={Springer}
}