Skip to content

This repository aims to demonstrate ways of saving costs on your AKS clusters

Notifications You must be signed in to change notification settings

gabriels-ramos/aks-cost-optimization

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 

Repository files navigation

AKS Cost Opmization

This repository aims to demonstrate ways of saving costs on your AKS clusters, leverarging the following methods:

  • Scale to Zero on Development Environments

    • Automating with Runbooks
      • ./demos/runbook
      • ./infrastructure/automation-account.tf
  • Autoscaling

    • Horizontal Pod Autoscaler + Cluster Autoscaler
      • ./demos/scaling
      • ./infrastructure/aks.tf
  • Right Sizing Pods and Nodes

    • Pod Resource requests and limits + Resource quota
      • ./demos/quota
      • ./infrastructure/policy.tf
  • Spot Nodepools

    • Hot / Warm Deployment using Regular + Spot Instances (multiple deployments and hpas)
      • ./demos/spot/hot-warm
      • ./infrastructure/aks
    • Node Affinity on Spot Instances
      • ./demos/spot/node-affinity
      • ./infrastructure/aks.tf
      • ./infrastructure/keda.tf
      • ./infrastructure/servicebus.tf

Relevant docs

https://docs.microsoft.com/en-us/learn/modules/aks-optimize-compute-costs/ https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#node-affinity https://docs.microsoft.com/en-us/azure/aks/start-stop-cluster?tabs=azure-powershell https://docs.microsoft.com/en-us/learn/modules/aks-optimize-compute-costs/7-exercise-resource-quota-azure-policy

Demos

Deploy the infrastructure

$ cd ./infrastructure
$ terraform init
$ terraform plan -var 'workshop_rg=<resource_group_name'
$ terraform apply

Start Stop

Azure Portal > Automation Accounts > start-stop-aks > Runbooks

Quota

Get the "development" cluster credentials and set it as the current context

$ az aks get-credentials --resource-group <resource_group_name> --name aks-workshop-dev
$ kubectl config use-context aks-workshop-dev

Apply and test the resource quota manifest

$ cd ./demos/quota
$ kubectl create ns dev
$ kubectl apply -f resource-quota.yaml --namespace=dev
$ kubectl get resourcequota resource-quota --namespace=dev --output=yaml
$ kubectl apply -f nginx-1.yaml --namespace=dev
$ kubectl get resourcequota resource-quota --namespace=dev --output=yaml
$ kubectl apply -f nginx-2.yaml --namespace=dev

Policy

Azure Portal > Policy > Assigned > AKS Dev Resource Limit

Test the policy

$ cd ./demos/quota
$ kubectl config use-context aks-workshop-dev
$ kubectl apply -f nginx-3.yaml --namespace=default

Hot Warm

Get the "production" cluster credentials and set it as the current context

$ az aks get-credentials --resource-group <resource_group_name> --name aks-workshop
$ kubectl config use-context aks-workshop

Apply Regular and Spot deployments

$ kubectl apply -f web-stress-spot-warm.yaml -f web-stress-spot-hot.yaml -f web-stress-service.yaml
$ watch -n 5 kubectl get pods -o wide
$ watch -n 5 kubectl get hpa

Run a stress test against the service endpoint

kubectl run -it artillery --image=artilleryio/artillery -- quick -n 3600 -c 15 "http://web-stress-simulator/web-stress-simulator-1.0.0/cpu?time=100"

Node Affinity

Build the consumer and producer app images and push them to ACR

$ cd ./demos/spot/node-affinity
$ az acr build --registry <registry_name> --file Dockerfile-consumer --image order-consumer:v1 .
$ az acr build --registry <registry_name> --file Dockerfile-producer --image order-producer:v1 .

Get the "production" cluster credentials and set it as the current context

$ az aks get-credentials --resource-group <resource_group_name> --name aks-workshop
$ kubectl config use-context aks-workshop

Edit order-consumer.yaml and order-producer.yaml, set the <container_registry_name> from the terraform output and then apply the Service Bus consumer app deployment

$ kubectl apply -f order-consumer.yaml

Start producing messages

$ kubectl apply -f order-producer.yaml
$ kubectl -n order scale --replicas=8 deployment/order-producer

Watch the consumer app deployment scale based on the queue size leveraging KEDA

$ watch -n 5 kubectl -n consumer get pods -o wide
$ kubectl -n consumer logs --selector app=consumer-app -f --max-log-requests 40

Scale spot instances to zero simulating a scenario where spot instances are unavailable and watch the deployment being allocated in regular instances

$ az aks nodepool update --resource-group <resource_group_name> --cluster-name aks-workshop --name spot --disable-cluster-autoscaler
$ az aks nodepool scale --resource-group <resource_group_name> --cluster-name aks-workshop --name spot --node-count 0
$ watch -n 5 kubectl -n consumer get pods -o wide

Watch the queue getting consumed again

Azure Portal > Service Bus > aks-workshop namespace > queues > order

About

This repository aims to demonstrate ways of saving costs on your AKS clusters

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • HCL 100.0%