Skip to content

gaochonghan/cascaded-framework

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Learning to Weighted Time-series via Cascaded Teaching Transformers

Python 3.6 PyTorch 1.10 cuDNN 7.3.1

This is the origin Pytorch implementation of Cascaded Framework in the following paper: Learning to Weighted Time-series via Cascaded Teaching Transformers



Figure 1. The architecture of cascaded framework.

Requirements

  • Python 3.8
  • matplotlib == 3.1.1
  • numpy == 1.19.4
  • pandas == 0.25.1
  • scikit_learn == 0.21.3
  • torch == 1.10.0

Dependencies can be installed using the following command:

pip install -r requirements.txt

Data

The ETT dataset used in the paper can be download in the repo ETDataset. The required data files should be put into data/ETT/ folder.

Usage

Commands for training and testing the model with Cascaded Framework on Dataset ETTh1:

# ETTh1
python -u main.py --fourrier --pred_len 24 --lambda_par 0.8 --A_lr 0.0002 --A_weight_decay 0 --itr 5\
        --w_weight_decay 0.01 --fourier_divider 40 --temp 5 --name param1 --data ETTh1 --data_path ETTh1.csv
python -u main.py --fourrier --pred_len 48 --lambda_par 0.8--A_lr 0.0002 --A_weight_decay 0 --itr 5\
	--w_weight_decay 0.001 --fourier_divider 40 --temp 1 --name param2 --data ETTh1 --data_path ETTh1.csv
python -u main.py --fourrier --pred_len 168 --lambda_par 0.8 --A_lr 0.0002 --A_weight_decay 0 --itr 5\
	--w_weight_decay 0.0008 --fourier_divider 40 --temp 5 --name param3 --data ETTh1 --data_path ETTh1.csv
python -u main.py --fourrier --pred_len 336 --lambda_par 0.6 --A_lr 0.0002 --A_weight_decay 0 --itr 5\
	--w_weight_decay 0.004 --fourier_divider 40 --temp 5 --name param4 --data ETTh1 --data_path ETTh1.csv
python -u main.py --fourrier --pred_len 720 --lambda_par 0.6 --A_lr 0.0002 --A_weight_decay 0 --itr 5\
	--w_weight_decay 0.0001 --fourier_divider 40 --temp 5 --name param5 --data ETTh1 --data_path ETTh1.csv

We will update all the scripts in the future.

Results



Figure 2. Multivariate forecasting results.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published