forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Misc] Move registry to its own file (vllm-project#9064)
Signed-off-by: Amit Garg <mitgarg17495@gmail.com>
- Loading branch information
1 parent
f97e0eb
commit c81fc8c
Showing
8 changed files
with
341 additions
and
335 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,325 +1,16 @@ | ||
import importlib | ||
import string | ||
import subprocess | ||
import sys | ||
import uuid | ||
from functools import lru_cache, partial | ||
from typing import Callable, Dict, List, Optional, Tuple, Type, Union | ||
|
||
import torch.nn as nn | ||
|
||
from vllm.logger import init_logger | ||
from vllm.utils import is_hip | ||
|
||
from .interfaces import supports_multimodal, supports_pp | ||
|
||
logger = init_logger(__name__) | ||
|
||
_GENERATION_MODELS = { | ||
"AquilaModel": ("llama", "LlamaForCausalLM"), | ||
"AquilaForCausalLM": ("llama", "LlamaForCausalLM"), # AquilaChat2 | ||
"ArcticForCausalLM": ("arctic", "ArcticForCausalLM"), | ||
"BaiChuanForCausalLM": ("baichuan", "BaiChuanForCausalLM"), # baichuan-7b | ||
"BaichuanForCausalLM": ("baichuan", "BaichuanForCausalLM"), # baichuan-13b | ||
"BloomForCausalLM": ("bloom", "BloomForCausalLM"), | ||
"ChatGLMModel": ("chatglm", "ChatGLMForCausalLM"), | ||
"ChatGLMForConditionalGeneration": ("chatglm", "ChatGLMForCausalLM"), | ||
"CohereForCausalLM": ("commandr", "CohereForCausalLM"), | ||
"DbrxForCausalLM": ("dbrx", "DbrxForCausalLM"), | ||
"DeciLMForCausalLM": ("decilm", "DeciLMForCausalLM"), | ||
"DeepseekForCausalLM": ("deepseek", "DeepseekForCausalLM"), | ||
"DeepseekV2ForCausalLM": ("deepseek_v2", "DeepseekV2ForCausalLM"), | ||
"ExaoneForCausalLM": ("exaone", "ExaoneForCausalLM"), | ||
"FalconForCausalLM": ("falcon", "FalconForCausalLM"), | ||
"GemmaForCausalLM": ("gemma", "GemmaForCausalLM"), | ||
"Gemma2ForCausalLM": ("gemma2", "Gemma2ForCausalLM"), | ||
"GPT2LMHeadModel": ("gpt2", "GPT2LMHeadModel"), | ||
"GPTBigCodeForCausalLM": ("gpt_bigcode", "GPTBigCodeForCausalLM"), | ||
"GPTJForCausalLM": ("gpt_j", "GPTJForCausalLM"), | ||
"GPTNeoXForCausalLM": ("gpt_neox", "GPTNeoXForCausalLM"), | ||
"GraniteForCausalLM": ("granite", "GraniteForCausalLM"), | ||
"GraniteMoeForCausalLM": ("granitemoe", "GraniteMoeForCausalLM"), | ||
"InternLMForCausalLM": ("llama", "LlamaForCausalLM"), | ||
"InternLM2ForCausalLM": ("internlm2", "InternLM2ForCausalLM"), | ||
"JAISLMHeadModel": ("jais", "JAISLMHeadModel"), | ||
"JambaForCausalLM": ("jamba", "JambaForCausalLM"), | ||
"LlamaForCausalLM": ("llama", "LlamaForCausalLM"), | ||
# For decapoda-research/llama-* | ||
"LLaMAForCausalLM": ("llama", "LlamaForCausalLM"), | ||
"MistralForCausalLM": ("llama", "LlamaForCausalLM"), | ||
"MixtralForCausalLM": ("mixtral", "MixtralForCausalLM"), | ||
"QuantMixtralForCausalLM": ("mixtral_quant", "MixtralForCausalLM"), | ||
# transformers's mpt class has lower case | ||
"MptForCausalLM": ("mpt", "MPTForCausalLM"), | ||
"MPTForCausalLM": ("mpt", "MPTForCausalLM"), | ||
"MiniCPMForCausalLM": ("minicpm", "MiniCPMForCausalLM"), | ||
"MiniCPM3ForCausalLM": ("minicpm3", "MiniCPM3ForCausalLM"), | ||
"NemotronForCausalLM": ("nemotron", "NemotronForCausalLM"), | ||
"OlmoForCausalLM": ("olmo", "OlmoForCausalLM"), | ||
"OlmoeForCausalLM": ("olmoe", "OlmoeForCausalLM"), | ||
"OPTForCausalLM": ("opt", "OPTForCausalLM"), | ||
"OrionForCausalLM": ("orion", "OrionForCausalLM"), | ||
"PersimmonForCausalLM": ("persimmon", "PersimmonForCausalLM"), | ||
"PhiForCausalLM": ("phi", "PhiForCausalLM"), | ||
"Phi3ForCausalLM": ("phi3", "Phi3ForCausalLM"), | ||
"Phi3SmallForCausalLM": ("phi3_small", "Phi3SmallForCausalLM"), | ||
"PhiMoEForCausalLM": ("phimoe", "PhiMoEForCausalLM"), | ||
"Qwen2ForCausalLM": ("qwen2", "Qwen2ForCausalLM"), | ||
"Qwen2MoeForCausalLM": ("qwen2_moe", "Qwen2MoeForCausalLM"), | ||
"Qwen2VLForConditionalGeneration": | ||
("qwen2_vl", "Qwen2VLForConditionalGeneration"), | ||
"RWForCausalLM": ("falcon", "FalconForCausalLM"), | ||
"StableLMEpochForCausalLM": ("stablelm", "StablelmForCausalLM"), | ||
"StableLmForCausalLM": ("stablelm", "StablelmForCausalLM"), | ||
"Starcoder2ForCausalLM": ("starcoder2", "Starcoder2ForCausalLM"), | ||
"SolarForCausalLM": ("solar", "SolarForCausalLM"), | ||
"XverseForCausalLM": ("xverse", "XverseForCausalLM"), | ||
# NOTE: The below models are for speculative decoding only | ||
"MedusaModel": ("medusa", "Medusa"), | ||
"EAGLEModel": ("eagle", "EAGLE"), | ||
"MLPSpeculatorPreTrainedModel": ("mlp_speculator", "MLPSpeculator"), | ||
} | ||
|
||
_EMBEDDING_MODELS = { | ||
"MistralModel": ("llama_embedding", "LlamaEmbeddingModel"), | ||
"Qwen2ForRewardModel": ("qwen2_rm", "Qwen2ForRewardModel"), | ||
} | ||
|
||
_MULTIMODAL_MODELS = { | ||
"Blip2ForConditionalGeneration": | ||
("blip2", "Blip2ForConditionalGeneration"), | ||
"ChameleonForConditionalGeneration": | ||
("chameleon", "ChameleonForConditionalGeneration"), | ||
"FuyuForCausalLM": ("fuyu", "FuyuForCausalLM"), | ||
"InternVLChatModel": ("internvl", "InternVLChatModel"), | ||
"LlavaForConditionalGeneration": ("llava", | ||
"LlavaForConditionalGeneration"), | ||
"LlavaNextForConditionalGeneration": ("llava_next", | ||
"LlavaNextForConditionalGeneration"), | ||
"LlavaNextVideoForConditionalGeneration": | ||
("llava_next_video", "LlavaNextVideoForConditionalGeneration"), | ||
"LlavaOnevisionForConditionalGeneration": | ||
("llava_onevision", "LlavaOnevisionForConditionalGeneration"), | ||
"MiniCPMV": ("minicpmv", "MiniCPMV"), | ||
"PaliGemmaForConditionalGeneration": ("paligemma", | ||
"PaliGemmaForConditionalGeneration"), | ||
"Phi3VForCausalLM": ("phi3v", "Phi3VForCausalLM"), | ||
"PixtralForConditionalGeneration": ("pixtral", | ||
"PixtralForConditionalGeneration"), | ||
"QWenLMHeadModel": ("qwen", "QWenLMHeadModel"), | ||
"Qwen2VLForConditionalGeneration": ("qwen2_vl", | ||
"Qwen2VLForConditionalGeneration"), | ||
"UltravoxModel": ("ultravox", "UltravoxModel"), | ||
"MllamaForConditionalGeneration": ("mllama", | ||
"MllamaForConditionalGeneration"), | ||
} | ||
_CONDITIONAL_GENERATION_MODELS = { | ||
"BartModel": ("bart", "BartForConditionalGeneration"), | ||
"BartForConditionalGeneration": ("bart", "BartForConditionalGeneration"), | ||
} | ||
|
||
_MODELS = { | ||
**_GENERATION_MODELS, | ||
**_EMBEDDING_MODELS, | ||
**_MULTIMODAL_MODELS, | ||
**_CONDITIONAL_GENERATION_MODELS, | ||
} | ||
|
||
# Architecture -> type. | ||
# out of tree models | ||
_OOT_MODELS: Dict[str, Type[nn.Module]] = {} | ||
|
||
# Models not supported by ROCm. | ||
_ROCM_UNSUPPORTED_MODELS: List[str] = [] | ||
|
||
# Models partially supported by ROCm. | ||
# Architecture -> Reason. | ||
_ROCM_SWA_REASON = ("Sliding window attention (SWA) is not yet supported in " | ||
"Triton flash attention. For half-precision SWA support, " | ||
"please use CK flash attention by setting " | ||
"`VLLM_USE_TRITON_FLASH_ATTN=0`") | ||
_ROCM_PARTIALLY_SUPPORTED_MODELS: Dict[str, str] = { | ||
"Qwen2ForCausalLM": | ||
_ROCM_SWA_REASON, | ||
"MistralForCausalLM": | ||
_ROCM_SWA_REASON, | ||
"MixtralForCausalLM": | ||
_ROCM_SWA_REASON, | ||
"PaliGemmaForConditionalGeneration": | ||
("ROCm flash attention does not yet " | ||
"fully support 32-bit precision on PaliGemma"), | ||
"Phi3VForCausalLM": | ||
("ROCm Triton flash attention may run into compilation errors due to " | ||
"excessive use of shared memory. If this happens, disable Triton FA " | ||
"by setting `VLLM_USE_TRITON_FLASH_ATTN=0`") | ||
} | ||
|
||
|
||
class ModelRegistry: | ||
|
||
@staticmethod | ||
def _get_module_cls_name(model_arch: str) -> Tuple[str, str]: | ||
module_relname, cls_name = _MODELS[model_arch] | ||
return f"vllm.model_executor.models.{module_relname}", cls_name | ||
|
||
@staticmethod | ||
@lru_cache(maxsize=128) | ||
def _try_get_model_stateful(model_arch: str) -> Optional[Type[nn.Module]]: | ||
if model_arch not in _MODELS: | ||
return None | ||
|
||
module_name, cls_name = ModelRegistry._get_module_cls_name(model_arch) | ||
module = importlib.import_module(module_name) | ||
return getattr(module, cls_name, None) | ||
|
||
@staticmethod | ||
def _try_get_model_stateless(model_arch: str) -> Optional[Type[nn.Module]]: | ||
if model_arch in _OOT_MODELS: | ||
return _OOT_MODELS[model_arch] | ||
|
||
if is_hip(): | ||
if model_arch in _ROCM_UNSUPPORTED_MODELS: | ||
raise ValueError( | ||
f"Model architecture {model_arch} is not supported by " | ||
"ROCm for now.") | ||
if model_arch in _ROCM_PARTIALLY_SUPPORTED_MODELS: | ||
logger.warning( | ||
"Model architecture %s is partially supported by ROCm: %s", | ||
model_arch, _ROCM_PARTIALLY_SUPPORTED_MODELS[model_arch]) | ||
|
||
return None | ||
|
||
@staticmethod | ||
def _try_load_model_cls(model_arch: str) -> Optional[Type[nn.Module]]: | ||
model = ModelRegistry._try_get_model_stateless(model_arch) | ||
if model is not None: | ||
return model | ||
|
||
return ModelRegistry._try_get_model_stateful(model_arch) | ||
|
||
@staticmethod | ||
def resolve_model_cls( | ||
architectures: Union[str, List[str]], ) -> Tuple[Type[nn.Module], str]: | ||
if isinstance(architectures, str): | ||
architectures = [architectures] | ||
if not architectures: | ||
logger.warning("No model architectures are specified") | ||
|
||
for arch in architectures: | ||
model_cls = ModelRegistry._try_load_model_cls(arch) | ||
if model_cls is not None: | ||
return (model_cls, arch) | ||
|
||
raise ValueError( | ||
f"Model architectures {architectures} are not supported for now. " | ||
f"Supported architectures: {ModelRegistry.get_supported_archs()}") | ||
|
||
@staticmethod | ||
def get_supported_archs() -> List[str]: | ||
return list(_MODELS.keys()) + list(_OOT_MODELS.keys()) | ||
|
||
@staticmethod | ||
def register_model(model_arch: str, model_cls: Type[nn.Module]): | ||
if model_arch in _MODELS: | ||
logger.warning( | ||
"Model architecture %s is already registered, and will be " | ||
"overwritten by the new model class %s.", model_arch, | ||
model_cls.__name__) | ||
|
||
_OOT_MODELS[model_arch] = model_cls | ||
|
||
@staticmethod | ||
@lru_cache(maxsize=128) | ||
def _check_stateless( | ||
func: Callable[[Type[nn.Module]], bool], | ||
model_arch: str, | ||
*, | ||
default: Optional[bool] = None, | ||
) -> bool: | ||
""" | ||
Run a boolean function against a model and return the result. | ||
If the model is not found, returns the provided default value. | ||
If the model is not already imported, the function is run inside a | ||
subprocess to avoid initializing CUDA for the main program. | ||
""" | ||
model = ModelRegistry._try_get_model_stateless(model_arch) | ||
if model is not None: | ||
return func(model) | ||
|
||
if model_arch not in _MODELS and default is not None: | ||
return default | ||
|
||
module_name, cls_name = ModelRegistry._get_module_cls_name(model_arch) | ||
|
||
valid_name_characters = string.ascii_letters + string.digits + "._" | ||
if any(s not in valid_name_characters for s in module_name): | ||
raise ValueError(f"Unsafe module name detected for {model_arch}") | ||
if any(s not in valid_name_characters for s in cls_name): | ||
raise ValueError(f"Unsafe class name detected for {model_arch}") | ||
if any(s not in valid_name_characters for s in func.__module__): | ||
raise ValueError(f"Unsafe module name detected for {func}") | ||
if any(s not in valid_name_characters for s in func.__name__): | ||
raise ValueError(f"Unsafe class name detected for {func}") | ||
|
||
err_id = uuid.uuid4() | ||
|
||
stmts = ";".join([ | ||
f"from {module_name} import {cls_name}", | ||
f"from {func.__module__} import {func.__name__}", | ||
f"assert {func.__name__}({cls_name}), '{err_id}'", | ||
]) | ||
|
||
result = subprocess.run([sys.executable, "-c", stmts], | ||
capture_output=True) | ||
|
||
if result.returncode != 0: | ||
err_lines = [line.decode() for line in result.stderr.splitlines()] | ||
if err_lines and err_lines[-1] != f"AssertionError: {err_id}": | ||
err_str = "\n".join(err_lines) | ||
raise RuntimeError( | ||
"An unexpected error occurred while importing the model in " | ||
f"another process. Error log:\n{err_str}") | ||
|
||
return result.returncode == 0 | ||
|
||
@staticmethod | ||
def is_embedding_model(architectures: Union[str, List[str]]) -> bool: | ||
if isinstance(architectures, str): | ||
architectures = [architectures] | ||
if not architectures: | ||
logger.warning("No model architectures are specified") | ||
|
||
return any(arch in _EMBEDDING_MODELS for arch in architectures) | ||
|
||
@staticmethod | ||
def is_multimodal_model(architectures: Union[str, List[str]]) -> bool: | ||
if isinstance(architectures, str): | ||
architectures = [architectures] | ||
if not architectures: | ||
logger.warning("No model architectures are specified") | ||
|
||
is_mm = partial(ModelRegistry._check_stateless, | ||
supports_multimodal, | ||
default=False) | ||
|
||
return any(is_mm(arch) for arch in architectures) | ||
|
||
@staticmethod | ||
def is_pp_supported_model(architectures: Union[str, List[str]]) -> bool: | ||
if isinstance(architectures, str): | ||
architectures = [architectures] | ||
if not architectures: | ||
logger.warning("No model architectures are specified") | ||
|
||
is_pp = partial(ModelRegistry._check_stateless, | ||
supports_pp, | ||
default=False) | ||
|
||
return any(is_pp(arch) for arch in architectures) | ||
|
||
from .interfaces import (HasInnerState, SupportsLoRA, SupportsMultiModal, | ||
SupportsPP, has_inner_state, supports_lora, | ||
supports_multimodal, supports_pp) | ||
from .registry import ModelRegistry | ||
|
||
__all__ = [ | ||
"ModelRegistry", | ||
"HasInnerState", | ||
"has_inner_state", | ||
"SupportsLoRA", | ||
"supports_lora", | ||
"SupportsMultiModal", | ||
"supports_multimodal", | ||
"SupportsPP", | ||
"supports_pp", | ||
] |
Oops, something went wrong.