-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
695 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
# © Crown Copyright GCHQ | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,218 @@ | ||
# © Crown Copyright GCHQ | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
""" | ||
Performance of different coreset algorithms on the synthetic dataset. | ||
We generate synthetic data using the scipy's make_blob function | ||
and generate coresets using different coreset algorithms | ||
""" | ||
|
||
import json | ||
import time | ||
from typing import Any, Dict, List, Tuple | ||
|
||
import jax | ||
import jax.numpy as jnp | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
from sklearn.datasets import make_blobs | ||
|
||
from coreax import Data, SlicedScoreMatching | ||
from coreax.kernels import ( | ||
SquaredExponentialKernel, | ||
SteinKernel, | ||
median_heuristic, | ||
) | ||
from coreax.metrics import KSD, MMD | ||
from coreax.solvers import ( | ||
KernelHerding, | ||
RandomSample, | ||
RPCholesky, | ||
SteinThinning, | ||
) | ||
from coreax.weights import MMDWeightsOptimiser | ||
|
||
|
||
def setup_kernel(x: np.ndarray) -> SquaredExponentialKernel: | ||
"""Set up kernel using median heuristic.""" | ||
num_samples_length_scale = min(300, 1000) | ||
random_seed = 45 | ||
generator = np.random.default_rng(random_seed) | ||
idx = generator.choice(300, num_samples_length_scale, replace=False) | ||
length_scale = median_heuristic(x[idx]) | ||
return SquaredExponentialKernel(length_scale=length_scale) | ||
|
||
|
||
def setup_stein_kernel( | ||
sq_exp_kernel: SquaredExponentialKernel, dataset: Data | ||
) -> SteinKernel: | ||
"""Set up SteinKernel.""" | ||
sliced_score_matcher = SlicedScoreMatching( | ||
jax.random.PRNGKey(45), | ||
jax.random.rademacher, | ||
use_analytic=True, | ||
num_random_vectors=100, | ||
learning_rate=0.001, | ||
num_epochs=50, | ||
) | ||
return SteinKernel( | ||
sq_exp_kernel, | ||
sliced_score_matcher.match(jnp.asarray(dataset.data)), | ||
) | ||
|
||
|
||
def setup_solvers( | ||
coreset_size: int, | ||
sq_exp_kernel: SquaredExponentialKernel, | ||
stein_kernel: SteinKernel, | ||
) -> List[Tuple[str, Any]]: | ||
"""Define solvers.""" | ||
random_key = jax.random.PRNGKey(42) | ||
return [ | ||
( | ||
"KernelHerding", | ||
KernelHerding(coreset_size=coreset_size, kernel=sq_exp_kernel), | ||
), | ||
( | ||
"RandomSample", | ||
RandomSample(coreset_size=coreset_size, random_key=random_key), | ||
), | ||
( | ||
"RPCholesky", | ||
RPCholesky( | ||
coreset_size=coreset_size, | ||
kernel=sq_exp_kernel, | ||
random_key=random_key, | ||
), | ||
), | ||
( | ||
"SteinThinning", | ||
SteinThinning( | ||
coreset_size=coreset_size, | ||
kernel=stein_kernel, | ||
regularise=False, | ||
), | ||
), | ||
] | ||
|
||
|
||
def compute_metrics( | ||
solvers: List[Tuple[str, Any]], | ||
dataset: Data, | ||
mmd_metric: MMD, | ||
ksd_metric: KSD, | ||
weights_optimiser: MMDWeightsOptimiser, | ||
) -> Dict[str, Dict[str, float]]: | ||
"""Compute coresubsets and metrics.""" | ||
results = {} | ||
for name, solver in solvers: | ||
start_time = time.time() | ||
coresubset, _ = solver.reduce(dataset) | ||
|
||
# Unweighted metrics | ||
unweighted_mmd = float(mmd_metric.compute(dataset, coresubset.coreset)) | ||
unweighted_ksd = float(ksd_metric.compute(dataset, coresubset.coreset)) | ||
|
||
# Weighted metrics | ||
weighted_coresubset = coresubset.solve_weights(weights_optimiser) | ||
weighted_mmd = float(weighted_coresubset.compute_metric(mmd_metric)) | ||
weighted_ksd = float(weighted_coresubset.compute_metric(ksd_metric)) | ||
|
||
end_time = time.time() | ||
elapsed_time = end_time - start_time | ||
|
||
results[name] = { | ||
"unweighted_mmd": unweighted_mmd, | ||
"unweighted_ksd": unweighted_ksd, | ||
"weighted_mmd": weighted_mmd, | ||
"weighted_ksd": weighted_ksd, | ||
"time": elapsed_time, | ||
} | ||
|
||
return results | ||
|
||
|
||
def visualize_results( | ||
results: Dict[str, Dict[str, float]], | ||
dataset: Data, | ||
coreset_size: int, | ||
) -> None: | ||
"""Visualize results for each solver.""" | ||
plt.figure(figsize=(20, 15)) | ||
for i, (name, metrics) in enumerate(results.items()): | ||
plt.subplot(2, 2, i + 1) | ||
plt.scatter( | ||
dataset.data[:, 0], | ||
dataset.data[:, 1], | ||
alpha=0.3, | ||
label="Original Data", | ||
) | ||
plt.title( | ||
f"{name} (size: {coreset_size})\n" | ||
f"Unweighted MMD: {metrics['unweighted_mmd']:.6f}, " | ||
f"KSD: {metrics['unweighted_ksd']:.6f}\n" | ||
f"Weighted MMD: {metrics['weighted_mmd']:.6f}, " | ||
f"KSD: {metrics['weighted_ksd']:.6f}" | ||
) | ||
plt.legend() | ||
plt.axis("equal") | ||
plt.tight_layout() | ||
plt.savefig(f"coreset_comparison_{coreset_size}.png") | ||
plt.close() | ||
|
||
|
||
def main() -> None: | ||
"""Perform the benchmark.""" | ||
# Generate data | ||
x, *_ = make_blobs(n_samples=1000, n_features=2, centers=10, random_state=45) | ||
dataset = Data(jnp.array(x)) | ||
|
||
# Set up kernel | ||
sq_exp_kernel = setup_kernel(x) | ||
|
||
# Set up SteinKernel | ||
stein_kernel = setup_stein_kernel(sq_exp_kernel, dataset) | ||
|
||
# Set up metrics | ||
mmd_metric = MMD(kernel=sq_exp_kernel) | ||
ksd_metric = KSD(kernel=sq_exp_kernel) | ||
|
||
# Set up weights optimizer | ||
weights_optimiser = MMDWeightsOptimiser(kernel=sq_exp_kernel) | ||
|
||
# Define coreset sizes | ||
coreset_sizes = [10, 50, 100, 200] | ||
|
||
all_results = {} | ||
|
||
for size in coreset_sizes: | ||
# Define solvers | ||
solvers = setup_solvers(size, sq_exp_kernel, stein_kernel) | ||
|
||
# Compute metrics | ||
results = compute_metrics( | ||
solvers, dataset, mmd_metric, ksd_metric, weights_optimiser | ||
) | ||
all_results[size] = results | ||
|
||
visualize_results(results, dataset, size) | ||
|
||
# Save results to JSON file | ||
with open("coreset_comparison_results.json", "w", encoding="utf-8") as f: | ||
json.dump(all_results, f, indent=2) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
Oops, something went wrong.