Skip to content

Latest commit

 

History

History
116 lines (87 loc) · 3.84 KB

README.md

File metadata and controls

116 lines (87 loc) · 3.84 KB

Perception Stitching: Zero-Shot Perception Encoder Transfer for Visuomotor Robot Policies

Pingcheng Jian, Easop Lee, Zachary Bell, Michael M. Zavlanos, Boyuan Chen
Duke University

Overview

This repo contains the implementation for the paper Perception Stitching: Zero-Shot Perception Encoder Transfer for Visuomotor Robot Policies.

pes_teaser

Citation

If you find our paper or codebase helpful, please consider citing:

@article{jian2024perception,
title={Perception Stitching: Zero-Shot Perception Encoder Transfer for Visuomotor Robot Policies},
author={Pingcheng Jian and Easop Lee and Zachary I. Bell and Michael M. Zavlanos and Boyuan Chen},
journal={Transactions on Machine Learning Research},
issn={2835-8856},
year={2024},
url={https://openreview.net/forum?id=tYxRyNT0TC},
note={}
}

Content

installation

  • The development tools of this project can be installed with conda:
$ conda env create -f pes_env.yml .

training

  1. Example of training with Perception Stitching method
python pes_train.py --device cuda:0 --save_model --seed 101 --process1 --effect blur
  1. Example of training with Perception Stitching (with L1 and L2 regularization) method
python pes_l1l2_train.py --device cuda:0 --save_model --seed 101 --process2 --effect fisheye
  1. Example of training with Perception Stitching (without disentanglement regularization) method
python pes_without_disent_train.py --device cuda:0 --save_model --seed 101 --process1 --effect zoomin
  1. Example of training with Cannistraci et al. 2024 (linear sum) baseline
python linear_sum_train.py --device cuda:0 --save_model --seed 101 --process2 --effect mask
  1. Example of training with Cannistraci et al. 2024 (non-linear sum) baseline
python nonlinear_sum_train.py --device cuda:0 --save_model --seed 101 --process1 --effect noise

testing

  1. Example of testing the policy trained with Perception Stitching method
python pes_test.py --device cuda:0 --vision1 robot0_eye_in_hand --vision2 agentview --effect blur
  1. Example of testing the policy trained with Perception Stitching (with L1 and L2 regularization) method
python pes_l1l2_test.py --device cuda:0 --vision1 robot0_eye_in_hand --vision2 agentview --effect fisheye
  1. Example of testing the policy trained with Perception Stitching (without disentanglement regularization) method
python pes_without_disent_test.py --device cuda:0 --vision1 robot0_eye_in_hand --vision2 agentview --effect zoomin
  1. Example of testing the policy trained with Cannistraci et al. 2024 (linear sum) baseline
python linear_sum_test.py --device cuda:0 --vision1 robot0_eye_in_hand --vision2 agentview --effect mask
  1. Example of testing the policy trained with Cannistraci et al. 2024 (non-linear sum) baseline
python nonlinear_sum_test.py --device cuda:0 --vision1 robot0_eye_in_hand --vision2 agentview --effect noise

Experiment setup in the simulation ps_teaser

Experiment setup in the real world ps_teaser

License

This repository is released under the Apache License 2.0. See LICENSE for additional details.

Acknowledgement

This project refers to the github repositories robomimic, robosuite, and relreps.