Skip to content

Commit

Permalink
ggml : group all experts in a single ggml_mul_mat_id (#6505)
Browse files Browse the repository at this point in the history
* ggml : group all experts in a single ggml_mul_mat_id
cuda : improve mmid row copy

* cuda : fix bin bcast with non-cont src0

* test-backend-ops : only run all mul mat tests for base types

* llama : disable moe offloading with SYCL

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
  • Loading branch information
slaren and ggerganov authored Apr 18, 2024
1 parent 03c0946 commit 0d56246
Show file tree
Hide file tree
Showing 12 changed files with 971 additions and 821 deletions.
57 changes: 36 additions & 21 deletions examples/imatrix/imatrix.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@ class IMatrixCollector {
std::mutex m_mutex;
int m_last_call = 0;
std::vector<float> m_src1_data;
std::vector<int> m_ids; // the expert ids from ggml_mul_mat_id
std::vector<char> m_ids; // the expert ids from ggml_mul_mat_id
//
void save_imatrix(const char * file_name) const;
void keep_imatrix(int ncall) const;
Expand Down Expand Up @@ -81,6 +81,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
if (ask) {
if (t->op == GGML_OP_MUL_MAT_ID) return true; // collect all indirect matrix multiplications
if (t->op != GGML_OP_MUL_MAT) return false;
// why are small batches ignored (<16 tokens)?
if (src1->ne[1] < 16 || src1->type != GGML_TYPE_F32) return false;
if (!(wname.substr(0, 4) == "blk." || (m_params.collect_output_weight && wname == "output.weight"))) return false;
return true;
Expand All @@ -101,14 +102,19 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
// this has been adapted to the new format of storing merged experts in a single 3d tensor
// ref: https://github.com/ggerganov/llama.cpp/pull/6387
if (t->op == GGML_OP_MUL_MAT_ID) {
const int idx = ((int32_t *) t->op_params)[0];
// ids -> [n_experts_used, n_tokens]
// src1 -> [cols, n_expert_used, n_tokens]
const ggml_tensor * ids = t->src[2];
const int n_as = src0->ne[2];
const int n_ids = ids->ne[0];

// the top-k selected expert ids are stored in the ids tensor
// for simplicity, always copy ids to host, because it is small
GGML_ASSERT(ids->ne[1] == src1->ne[1]);
m_ids.resize(ggml_nbytes(ids)/sizeof(int));
// take into account that ids is not contiguous!

GGML_ASSERT(ids->ne[1] == src1->ne[2]);

m_ids.resize(ggml_nbytes(ids));
ggml_backend_tensor_get(ids, m_ids.data(), 0, ggml_nbytes(ids));

auto & e = m_stats[wname];
Expand All @@ -118,26 +124,35 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
// using the following line, we can correct for that if needed by replacing the line above with:
//if (idx == t->src[0]->ne[0] - 1) ++e.ncall;

if (e.values.empty()) {
e.values.resize(src1->ne[0]*n_as, 0);
}
else if (e.values.size() != (size_t)src1->ne[0]*n_as) {
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]*n_as);
exit(1); //GGML_ASSERT(false);
}
if (m_params.verbosity > 1) {
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[2], (int)src1->type);
}
// loop over all possible experts, regardless if they are used or not in the batch
for (int ex = 0; ex < n_as; ++ex) {
size_t e_start = ex*src1->ne[0];
if (e.values.empty()) {
e.values.resize(src1->ne[0]*n_as, 0);
}
else if (e.values.size() != (size_t)src1->ne[0]*n_as) {
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]*n_as);
exit(1); //GGML_ASSERT(false);
}
if (m_params.verbosity > 1) {
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
}
for (int row = 0; row < (int)src1->ne[1]; ++row) {
const int excur = m_ids[row*n_as + idx];
GGML_ASSERT(excur >= 0 && excur < n_as); // sanity check
if (excur != ex) continue;
const float * x = data + row * src1->ne[0];
for (int j = 0; j < (int)src1->ne[0]; ++j) {
e.values[e_start + j] += x[j]*x[j];

for (int idx = 0; idx < n_ids; ++idx) {
for (int row = 0; row < (int)src1->ne[2]; ++row) {
const int excur = *(const int32_t *) (m_ids.data() + row*ids->nb[1] + idx*ids->nb[0]);

GGML_ASSERT(excur >= 0 && excur < n_as); // sanity check

if (excur != ex) continue;

const int64_t i11 = idx % src1->ne[1];
const int64_t i12 = row;
const float * x = (const float *)((const char *)data + i11*src1->nb[1] + i12*src1->nb[2]);

for (int j = 0; j < (int)src1->ne[0]; ++j) {
e.values[e_start + j] += x[j]*x[j];
}
}
}
if (e.ncall > m_last_call) {
Expand Down
179 changes: 134 additions & 45 deletions ggml-cuda.cu
Original file line number Diff line number Diff line change
Expand Up @@ -1231,7 +1231,7 @@ static void ggml_cuda_op_mul_mat_cublas(

if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
// convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool());
ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool(id));
if (src0->type != GGML_TYPE_F16) {
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type);
GGML_ASSERT(to_fp16_cuda != nullptr);
Expand All @@ -1241,7 +1241,7 @@ static void ggml_cuda_op_mul_mat_cublas(
}
const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16.get();

ggml_cuda_pool_alloc<half> src1_as_f16(ctx.pool());
ggml_cuda_pool_alloc<half> src1_as_f16(ctx.pool(id));
if (src1->type != GGML_TYPE_F16) {
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
GGML_ASSERT(to_fp16_cuda != nullptr);
Expand All @@ -1250,7 +1250,7 @@ static void ggml_cuda_op_mul_mat_cublas(
to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream);
}
const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get();
ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(), row_diff*src1_ncols);
ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(id), row_diff*src1_ncols);

const half alpha_f16 = 1.0f;
const half beta_f16 = 0.0f;
Expand Down Expand Up @@ -1960,20 +1960,73 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
}
}

struct mmid_row_mapping {
int32_t i1;
int32_t i2;
};

static __global__ void k_copy_src1_to_contiguous(const char * __restrict__ src1_original, char * __restrict__ src1_contiguous,
int * __restrict__ cur_src1_row, mmid_row_mapping * __restrict__ row_mapping,
const char * __restrict ids, int64_t i02, size_t ids_nb1, size_t ids_nb0,
int64_t ne11, int64_t ne10,
size_t nb11, size_t nb12) {
int32_t iid1 = blockIdx.x;
int32_t id = blockIdx.y;

const int32_t row_id_i = *(const int32_t *) (ids + iid1*ids_nb1 + id*ids_nb0);

if (row_id_i != i02) {
return;
}

const int64_t i11 = id % ne11;
const int64_t i12 = iid1;

__shared__ int src1_row;
if (threadIdx.x == 0) {
src1_row = atomicAdd(cur_src1_row, 1);
row_mapping[src1_row] = {id, iid1};
}
__syncthreads();

const float * src1_row_original = (const float *)(src1_original + i11*nb11 + i12*nb12);
float * src1_row_contiguous = (float *)(src1_contiguous + src1_row*nb11);

for (int i = threadIdx.x; i < ne10; i += blockDim.x) {
src1_row_contiguous[i] = src1_row_original[i];
}
}

static __global__ void k_copy_dst_from_contiguous(char * __restrict__ dst_original, const char * __restrict__ dst_contiguous,
const mmid_row_mapping * __restrict__ row_mapping,
int64_t ne0,
size_t nb1, size_t nb2) {
int32_t i = blockIdx.x;

const int32_t i1 = row_mapping[i].i1;
const int32_t i2 = row_mapping[i].i2;

const float * dst_row_contiguous = (const float *)(dst_contiguous + i*nb1);
float * dst_row_original = (float *)(dst_original + i1*nb1 + i2*nb2);

for (int j = threadIdx.x; j < ne0; j += blockDim.x) {
dst_row_original[j] = dst_row_contiguous[j];
}
}

static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const ggml_tensor * ids = dst->src[2];

GGML_TENSOR_BINARY_OP_LOCALS

GGML_ASSERT(!ggml_backend_buffer_is_cuda_split(src0->buffer) && "mul_mat_id does not support split buffers");

cudaStream_t stream = ctx.stream();

const size_t nb11 = src1->nb[1];
const size_t nb1 = dst->nb[1];

const int32_t id = ((int32_t *) dst->op_params)[0];
const int32_t n_as = src0->ne[2];
const int64_t n_as = ne02;
const int64_t n_ids = ids->ne[0];

std::vector<char> ids_host(ggml_nbytes(ids));
const char * ids_dev = (const char *) ids->data;
Expand All @@ -1982,27 +2035,47 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *

ggml_tensor src0_row = *src0;
ggml_tensor src1_row = *src1;
ggml_tensor dst_row = *dst;
ggml_tensor dst_row = *dst;

char * src0_original = (char *) src0->data;
char * src1_original = (char *) src1->data;
char * dst_original = (char *) dst->data;

src0_row.ne[2] = 1;
src0_row.ne[3] = 1;
src0_row.nb[3] = src0->nb[2];
src0_row.nb[3] = nb02;

if (src1->ne[1] == 1) {
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
src1_row.ne[1] = 1;
src1_row.ne[2] = 1;
src1_row.ne[3] = 1;
src1_row.nb[2] = nb11;
src1_row.nb[3] = nb11;

GGML_ASSERT(row_id >= 0 && row_id < n_as);
dst_row.ne[1] = 1;
dst_row.ne[2] = 1;
dst_row.ne[3] = 1;
dst_row.nb[2] = nb1;
dst_row.nb[3] = nb1;

src0_row.data = src0_original + row_id*src0->nb[2];
src1_row.data = src1_original + i01*src1->nb[1];
dst_row.data = dst_original + i01*dst->nb[1];
if (ne12 == 1) {
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
for (int64_t id = 0; id < n_ids; id++) {
const int32_t i02 = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);

ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
GGML_ASSERT(i02 >= 0 && i02 < n_as);

const int64_t i11 = id % ne11;
const int64_t i12 = iid1;

const int64_t i1 = id;
const int64_t i2 = i12;

src0_row.data = src0_original + i02*nb02;
src1_row.data = src1_original + i11*nb11 + i12*nb12;
dst_row.data = dst_original + i1*nb1 + i2*nb2;

ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
}
}
} else {
ggml_cuda_pool_alloc<char> src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1));
Expand All @@ -2011,54 +2084,69 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
src1_row.data = src1_contiguous.get();
dst_row.data = dst_contiguous.get();

for (int32_t row_id = 0; row_id < n_as; ++row_id) {
for (int64_t i02 = 0; i02 < n_as; i02++) {
int64_t num_src1_rows = 0;
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);

if (row_id_i != row_id) {
continue;
}
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
for (int64_t id = 0; id < n_ids; id++) {
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);

GGML_ASSERT(row_id >= 0 && row_id < n_as);
GGML_ASSERT(row_id_i >= 0 && row_id_i < n_as);

CUDA_CHECK(cudaMemcpyAsync(src1_contiguous.get() + num_src1_rows*nb11, src1_original + i01*nb11,
nb11, cudaMemcpyDeviceToDevice, stream));
num_src1_rows++;
if (row_id_i != i02) {
continue;
}

num_src1_rows++;
}
}

if (num_src1_rows == 0) {
continue;
}

src0_row.data = src0_original + row_id*src0->nb[2];
ggml_cuda_pool_alloc<int> dev_cur_src1_row(ctx.pool(), 1);
ggml_cuda_pool_alloc<mmid_row_mapping> dev_row_mapping(ctx.pool(), num_src1_rows);
CUDA_CHECK(cudaMemsetAsync(dev_cur_src1_row.get(), 0, sizeof(int), stream));

src1_row.ne[1] = num_src1_rows;
dst_row.ne[1] = num_src1_rows;
{
dim3 block_dims(std::min((unsigned int)ne10, 768u));
dim3 grid_dims(ids->ne[1], n_ids);
k_copy_src1_to_contiguous<<<grid_dims, block_dims, 0, stream>>>(
src1_original, src1_contiguous.get(),
dev_cur_src1_row.get(), dev_row_mapping.get(),
ids_dev, i02, ids->nb[1], ids->nb[0],
ne11, ne10,
nb11, nb12);
CUDA_CHECK(cudaGetLastError());
}

src0_row.data = src0_original + i02*nb02;

GGML_ASSERT(nb11 == sizeof(float)*ne10);
GGML_ASSERT(nb1 == sizeof(float)*ne0);

src1_row.ne[1] = num_src1_rows;
src1_row.nb[1] = nb11;
src1_row.nb[2] = num_src1_rows*nb11;
src1_row.nb[3] = num_src1_rows*nb11;

dst_row.ne[1] = num_src1_rows;
dst_row.nb[1] = nb1;
dst_row.nb[2] = num_src1_rows*nb1;
dst_row.nb[3] = num_src1_rows*nb1;

ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);

num_src1_rows = 0;
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);

if (row_id_i != row_id) {
continue;
}

GGML_ASSERT(row_id >= 0 && row_id < n_as);

CUDA_CHECK(cudaMemcpyAsync(dst_original + i01*nb1, dst_contiguous.get() + num_src1_rows*nb1,
nb1, cudaMemcpyDeviceToDevice, stream));
num_src1_rows++;
{
dim3 block_dims(std::min((unsigned int)ne0, 768u));
dim3 grid_dims(num_src1_rows);
k_copy_dst_from_contiguous<<<grid_dims, block_dims, 0, stream>>>(
dst_original, dst_contiguous.get(),
dev_row_mapping.get(),
ne0,
nb1, nb2);
CUDA_CHECK(cudaGetLastError());
}
}
}
Expand Down Expand Up @@ -2487,7 +2575,8 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
GGML_CALL static bool ggml_backend_cuda_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
const int min_batch_size = 32;

return op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS;
return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) ||
(op->ne[2] >= min_batch_size && op->op == GGML_OP_MUL_MAT_ID);

GGML_UNUSED(backend);
}
Expand Down
Loading

0 comments on commit 0d56246

Please sign in to comment.