Skip to content

Commit

Permalink
llm : support Adept Persimmon 8B (#3410)
Browse files Browse the repository at this point in the history
* Produces garbage output

* wip: correct tensors up to RoPE

* correct tensors thru RoPE

* Correct outputs through masked & softmax'd KQ

* fp32 works

* Rename adept->persimmon

* Produces correct outputs

* clean up convert scripts

* remove printing logic from ggml.c

* remove prints from llama.cpp & fix merge

* trivial cleanups

* Add offload funcs

* update conversion script to directly take adept artifacts rather than .saftensors file

* Fix norm eps bug

* Support sqr and concat on metal, persimmon-8b-q4 runs correctly

* Small changes from review

* Formatting changes

* Minor changes to conversion script

* Remove old script

* Fix editorconfig formatting

* Fix build

* add overlooked offload code ggml-ci
  • Loading branch information
phillip-kravtsov authored Oct 7, 2023
1 parent 3a716b4 commit 0e797c2
Show file tree
Hide file tree
Showing 5 changed files with 854 additions and 76 deletions.
130 changes: 130 additions & 0 deletions convert-persimmon-to-gguf.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,130 @@
import torch
import os
from pprint import pprint
import sys
import argparse
from pathlib import Path
from sentencepiece import SentencePieceProcessor
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf

def _flatten_dict(dct, tensors, prefix=None):
assert isinstance(dct, dict)
for key in dct.keys():
new_prefix = prefix + '.' + key if prefix is not None else key
if isinstance(dct[key], torch.Tensor):
tensors[new_prefix] = dct[key]
elif isinstance(dct[key], dict):
_flatten_dict(dct[key], tensors, new_prefix)
else:
raise ValueError(type(dct[key]))
return None

def _get_sentencepiece_tokenizer_info(dir_model: Path):
tokenizer_path = dir_model / 'adept_vocab.model'
print('gguf: getting sentencepiece tokenizer from', tokenizer_path)
tokenizer = SentencePieceProcessor(str(tokenizer_path))
print('gguf: adding tokens')
tokens: list[bytes] = []
scores: list[float] = []
toktypes: list[int] = []

for i in range(tokenizer.vocab_size()):
text: bytes
score: float

piece = tokenizer.id_to_piece(i)
text = piece.encode("utf-8")
score = tokenizer.get_score(i)

toktype = 1
if tokenizer.is_unknown(i):
toktype = 2
if tokenizer.is_control(i):
toktype = 3
if tokenizer.is_unused(i):
toktype = 5
if tokenizer.is_byte(i):
toktype = 6

tokens.append(text)
scores.append(score)
toktypes.append(toktype)
pass
return tokens, scores, toktypes

def main():
parser = argparse.ArgumentParser(description="Convert a Persimmon model from Adept (e.g. Persimmon 8b chat) to a GGML compatible file")
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
parser.add_argument("--ckpt-path", type=Path, help="path to persimmon checkpoint .pt file")
parser.add_argument("--model-dir", type=Path, help="directory containing model e.g. 8b_chat_model_release")
parser.add_argument("--adept-inference-dir", type=str, help="path to adept-inference code directory")
args = parser.parse_args()
sys.path.append(str(args.adept_inference_dir))
persimmon_model = torch.load(args.ckpt_path)
hparams = persimmon_model['args']
pprint(hparams)
tensors = {}
_flatten_dict(persimmon_model['model'], tensors, None)

arch = gguf.MODEL_ARCH.PERSIMMON
gguf_writer = gguf.GGUFWriter(args.outfile, gguf.MODEL_ARCH_NAMES[arch])

block_count = hparams.num_layers
head_count = hparams.num_attention_heads
head_count_kv = head_count
ctx_length = hparams.seq_length
hidden_size = hparams.hidden_size

gguf_writer.add_name('persimmon-8b-chat')
gguf_writer.add_context_length(ctx_length)
gguf_writer.add_embedding_length(hidden_size)
gguf_writer.add_block_count(block_count)
gguf_writer.add_feed_forward_length(hparams.ffn_hidden_size)
gguf_writer.add_rope_dimension_count(hidden_size // head_count)
gguf_writer.add_head_count(head_count)
gguf_writer.add_head_count_kv(head_count_kv)
gguf_writer.add_rope_freq_base(hparams.rotary_emb_base)
gguf_writer.add_layer_norm_eps(hparams.layernorm_epsilon)

tokens, scores, toktypes = _get_sentencepiece_tokenizer_info(args.model_dir)
gguf_writer.add_tokenizer_model('llama')
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
gguf_writer.add_bos_token_id(71013)
gguf_writer.add_eos_token_id(71013)

tensor_map = gguf.get_tensor_name_map(arch, block_count)
print(tensor_map)
for name in tensors.keys():
data = tensors[name]
if name.endswith(".self_attention.rotary_emb.inv_freq"):
continue
old_dtype = data.dtype
# TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
data = data.to(torch.float32).squeeze().numpy()
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()
n_dims = len(data.shape)
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.add_tensor(new_name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()

gguf_writer.close()

print(f"gguf: model successfully exported to '{args.outfile}'")
print("")



if __name__ == '__main__':
main()
54 changes: 54 additions & 0 deletions ggml-metal.m
Original file line number Diff line number Diff line change
Expand Up @@ -109,6 +109,8 @@
GGML_METAL_DECL_KERNEL(cpy_f32_f16);
GGML_METAL_DECL_KERNEL(cpy_f32_f32);
GGML_METAL_DECL_KERNEL(cpy_f16_f16);
GGML_METAL_DECL_KERNEL(concat);
GGML_METAL_DECL_KERNEL(sqr);

#undef GGML_METAL_DECL_KERNEL
};
Expand Down Expand Up @@ -300,6 +302,8 @@ static void ggml_metal_log(enum ggml_log_level level, const char* format, ...){
GGML_METAL_ADD_KERNEL(cpy_f32_f16);
GGML_METAL_ADD_KERNEL(cpy_f32_f32);
GGML_METAL_ADD_KERNEL(cpy_f16_f16);
GGML_METAL_ADD_KERNEL(concat);
GGML_METAL_ADD_KERNEL(sqr);

#undef GGML_METAL_ADD_KERNEL
}
Expand Down Expand Up @@ -375,6 +379,8 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
GGML_METAL_DEL_KERNEL(cpy_f32_f16);
GGML_METAL_DEL_KERNEL(cpy_f32_f32);
GGML_METAL_DEL_KERNEL(cpy_f16_f16);
GGML_METAL_DEL_KERNEL(concat);
GGML_METAL_DEL_KERNEL(sqr);

#undef GGML_METAL_DEL_KERNEL

Expand Down Expand Up @@ -766,6 +772,43 @@ void ggml_metal_graph_compute(
{
// noop
} break;
case GGML_OP_CONCAT:
{

int64_t nb = ne00;
[encoder setComputePipelineState:ctx->pipeline_concat];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:8];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:9];
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:10];
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11];
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12];
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13];
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14];
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16];
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17];
[encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20];
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21];
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22];
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24];
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25];
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26];
[encoder setBytes:&nb length:sizeof(nb) atIndex:27];

const int nth = MIN(1024, ne0);
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_ADD:
{
GGML_ASSERT(ggml_is_contiguous(src0));
Expand Down Expand Up @@ -903,6 +946,17 @@ void ggml_metal_graph_compute(
GGML_ASSERT(false);
}
} break;
case GGML_OP_SQR:
{
GGML_ASSERT(ggml_is_contiguous(src0));

[encoder setComputePipelineState:ctx->pipeline_sqr];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];

const int64_t n = ggml_nelements(dst);
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_OP_SOFT_MAX:
{
const int nth = MIN(32, ne00);
Expand Down
63 changes: 63 additions & 0 deletions ggml-metal.metal
Original file line number Diff line number Diff line change
Expand Up @@ -132,6 +132,13 @@ kernel void kernel_relu(
dst[tpig] = max(0.0f, src0[tpig]);
}

kernel void kernel_sqr(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] * src0[tpig];
}

constant float GELU_COEF_A = 0.044715f;
constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;

Expand Down Expand Up @@ -1098,6 +1105,62 @@ kernel void kernel_cpy_f32_f32(
}
}

kernel void kernel_concat(
device const char * src0,
device const char * src1,
device char * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant int64_t & ne13,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant uint64_t & nb13,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {

const int64_t i03 = tgpig.z;
const int64_t i02 = tgpig.y;
const int64_t i01 = tgpig.x;

const int64_t i13 = i03 % ne13;
const int64_t i12 = i02 % ne12;
const int64_t i11 = i01 % ne11;

device const char * src0_ptr = src0 + i03 * nb03 + i02 * nb02 + i01 * nb01 + tpitg.x*nb00;
device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11 + tpitg.x*nb10;
device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + tpitg.x*nb0;

for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
if (i02 < ne02) {
((device float *)dst_ptr)[0] = ((device float *)src0_ptr)[0];
src0_ptr += ntg.x*nb00;
} else {
((device float *)dst_ptr)[0] = ((device float *)src1_ptr)[0];
src1_ptr += ntg.x*nb10;
}
dst_ptr += ntg.x*nb0;
}
}

//============================================ k-quants ======================================================

#ifndef QK_K
Expand Down
Loading

0 comments on commit 0e797c2

Please sign in to comment.