Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Allow overriding GGUF metadata when loading model #4092

Merged
merged 13 commits into from
Dec 5, 2023

Conversation

KerfuffleV2
Copy link
Collaborator

For example you can do:

--override-kv tokenizer.ggml.bos_token_id=int:1 
--override-kv llama.attention.layer_norm_rms_epsilon=float:0.001
--override-kv tokenizer.ggml.add_bos_token=bool:false

Only supports int-type, float-type and boolean overrides currently. I think this is something that could be pretty useful for development, it's also something that would allow end users to correct metadata that has issues without having to download a whole new model.

This also makes the loader metadata KV handling nicer. Instead of:

GGUF_GET_KEY(ctx, hparams.n_ctx_train, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_CONTEXT_LENGTH));

You can now write:

ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train, true);

Since hparams.n_ctx_train is a uint32_t it can figure out to call gguf_get_val_u32 and that the GGUF type is GGUF_TYPE_UINT32 without having to explicitly write it.

get_key() also returns a boolean value so it's possible to know whether the target got changed or not, which makes the logic for stuff like the special token handling less convoluted.

This could use a bit more refining but I don't want to put too much work into that until I know it has a chance of being accepted.

@KerfuffleV2 KerfuffleV2 added the enhancement New feature or request label Nov 15, 2023
llama.cpp Outdated Show resolved Hide resolved
llama.cpp Outdated Show resolved Hide resolved
llama.cpp Outdated Show resolved Hide resolved
llama.cpp Outdated Show resolved Hide resolved
llama.cpp Outdated Show resolved Hide resolved
llama.cpp Outdated Show resolved Hide resolved
@KerfuffleV2
Copy link
Collaborator Author

@cebtenzzre

Is this in any way, shape or form heading in the right direction? (I mean the general approach, the code is terrible, also it doesn't actually do any overriding yet.)

Expand
namespace Merp {

    template<typename T> using gguf_getter = T (*)(const gguf_context *, const int);
    template<typename T> class Derp {
        public:
        static struct GetValue{} getValue;
        static struct GetArrayLen{} getArrayLen;

        static const gguf_type gt;
        static constexpr bool can_override = true;
        static const gguf_getter<T> getter;

        static void get_kv(const gguf_context * ctx, const int k, T & target) {
            const enum gguf_type kt = gguf_get_kv_type(ctx, k);

            if (kt != gt) {
                throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
                    gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(gt)));
            }
            target = getter(ctx, k);
        }

        static bool set(const gguf_context * ctx, const int k, T & target, struct llama_model_kv_override *override = nullptr) {
            get_kv(ctx, k, target);
            return true;
        }
    };

    template<> const gguf_type Derp<bool>::gt = GGUF_TYPE_BOOL;
    template<> const gguf_getter<bool> Derp<bool>::getter = gguf_get_val_bool;

    template<> const gguf_type Derp<uint8_t>::gt = GGUF_TYPE_UINT8;
    template<> const gguf_getter<uint8_t> Derp<uint8_t>::getter = gguf_get_val_u8;

    template<> const gguf_type Derp<uint16_t>::gt = GGUF_TYPE_UINT16;
    template<> const gguf_getter<uint16_t> Derp<uint16_t>::getter = gguf_get_val_u16;

    template<> const gguf_type Derp<uint32_t>::gt = GGUF_TYPE_UINT32;
    template<> const gguf_getter<uint32_t> Derp<uint32_t>::getter = gguf_get_val_u32;

    template<> const gguf_type Derp<uint64_t>::gt = GGUF_TYPE_UINT64;
    template<> const gguf_getter<uint64_t> Derp<uint64_t>::getter = gguf_get_val_u64;

    template<> const gguf_type Derp<int8_t>::gt = GGUF_TYPE_UINT8;
    template<> const gguf_getter<int8_t> Derp<int8_t>::getter = gguf_get_val_i8;

    template<> const gguf_type Derp<int16_t>::gt = GGUF_TYPE_UINT16;
    template<> const gguf_getter<int16_t> Derp<int16_t>::getter = gguf_get_val_i16;

    template<> const gguf_type Derp<int32_t>::gt = GGUF_TYPE_UINT32;
    template<> const gguf_getter<int32_t> Derp<int32_t>::getter = gguf_get_val_i32;

    template<> const gguf_type Derp<int64_t>::gt = GGUF_TYPE_UINT64;
    template<> const gguf_getter<int64_t> Derp<int64_t>::getter = gguf_get_val_i64;

    template<> const gguf_type Derp<float>::gt = GGUF_TYPE_FLOAT32;
    template<> const gguf_getter<float> Derp<float>::getter = gguf_get_val_f32;

    template<> const gguf_type Derp<double>::gt = GGUF_TYPE_FLOAT64;
    template<> const gguf_getter<double> Derp<double>::getter = gguf_get_val_f64;

    template<> const gguf_type Derp<const char *>::gt = GGUF_TYPE_STRING;
    template<> const gguf_getter<const char *> Derp<const char *>::getter = gguf_get_val_str;

    template<> const gguf_type Derp<std::string>::gt = GGUF_TYPE_STRING;
    template<> const gguf_getter<std::string> Derp<std::string>::getter = nullptr;
    template<> bool Derp<std::string>::set(const gguf_context * ctx, const int k, std::string & target, struct llama_model_kv_override *override) {
        const char * temp;
        Derp<const char *>::get_kv(ctx, k, temp);
        target = std::string(temp);
        return true;
    }
}

This actually seems to work for handling the normal keys. I still have to figure out how to fit overrides and array lengths with this approach.

@cebtenzzre
Copy link
Collaborator

cebtenzzre commented Nov 16, 2023

That seems like a better general approach, but the way you are setting the variables is again unidiomatic - you should really be using class template specializations, which are the main building block of the C++ type system. Consider this example:

template <typename T>
class Derp_Base; // no implementation

template <>
class Derp_Base<int> {
public:
    static constexpr int type_id = 1;
};

template <typename T>
class Derp: public Derp_Base<T> {
    Derp() = delete; // cannot be instantiated

public:
    static int foo() {
        return Derp::type_id;
    }
};

void foo() {
    Derp<int>::foo(); // returns 1
    // Derp<float>::foo(); will cause "use of incomplete type" error
}

Derp_Base in this example could also contain a protected static member function that calls the appropriate gguf_get_val_*.

@KerfuffleV2 KerfuffleV2 marked this pull request as draft November 16, 2023 20:18
@KerfuffleV2
Copy link
Collaborator Author

That seems like a better general approach, but the way you are setting the variables is again unidiomatic

Unfortunately, I'm pretty sure I'm a long ways off of being able to write complicated idiomatic template stuff in C++.

If you're not tired of teaching me C++ yet...

Expand
#define MK_GKVBASE(cty, gtid, gfun) \
    template<> class GKV_Base<cty> { \
        public: \
        static constexpr gguf_type gt = gtid; \
        static constexpr cty (*getter)(const gguf_context *, const int) = gfun; \
    }

    template <typename T> class GKV_Base;
    MK_GKVBASE(bool,         GGUF_TYPE_BOOL,    gguf_get_val_bool);
    MK_GKVBASE(uint8_t,      GGUF_TYPE_UINT8,   gguf_get_val_u8  );
    MK_GKVBASE(uint16_t,     GGUF_TYPE_UINT16,  gguf_get_val_u16 );
    MK_GKVBASE(uint32_t,     GGUF_TYPE_UINT32,  gguf_get_val_u32 );
    MK_GKVBASE(uint64_t,     GGUF_TYPE_UINT64,  gguf_get_val_u64 );
    MK_GKVBASE(int8_t,       GGUF_TYPE_INT8,    gguf_get_val_i8  );
    MK_GKVBASE(int16_t,      GGUF_TYPE_INT16,   gguf_get_val_i16 );
    MK_GKVBASE(int32_t,      GGUF_TYPE_INT32,   gguf_get_val_i32 );
    MK_GKVBASE(int64_t,      GGUF_TYPE_INT64,   gguf_get_val_i64 );
    MK_GKVBASE(float,        GGUF_TYPE_FLOAT32, gguf_get_val_f32 );
    MK_GKVBASE(double,       GGUF_TYPE_FLOAT64, gguf_get_val_f64 );
    MK_GKVBASE(const char *, GGUF_TYPE_STRING,  gguf_get_val_str );

    struct GetArrayLen{int value;};
    template<> class GKV_Base<GetArrayLen> {
        public:
        static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
        static GetArrayLen getter(const gguf_context *ctx, const int k) {
            return GetArrayLen{gguf_get_arr_n(ctx, k)};
        }
    };

    template<typename T>
    class GKV: public GKV_Base<T> {
        GKV() = delete;

        public:
        static T get_kv(const gguf_context * ctx, const int k) {
            const enum gguf_type kt = gguf_get_kv_type(ctx, k);

            if (kt != GKV::gt) {
                throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
                    gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
            }
            return GKV::getter(ctx, k);
        }

        static bool set(const gguf_context * ctx, const int k, T & target, struct llama_model_kv_override *override = nullptr) {
            target = get_kv(ctx, k);
            return true;
        }
    };

    template<>
    class GKV<std::string>: public GKV_Base<const char *> {
        public:
        static bool set(const gguf_context * ctx, const int k, std::string & target, struct llama_model_kv_override *override = nullptr) {
            target = std::string(GKV<const char *>::get_kv(ctx, k));
            return true;
        }
    };

Is something like that kind of what you were talking about? It's dawned on me that templating the array length thing to work with any int types is actually really stupid and pointless. So I'm almost certainly going to remove the GetArrayLen thing, I just wanted to figure it out (it seems to work).

If this general approach is fairly reasonable, I think there's a pretty clean way to make the override part fit into it. I'll just have something like a bool try_override(...) method with a default implementation that returns false. Then the types that support overriding can try the override and return true if they applied the override, otherwise it can fall back to fetching from the GGUF metadata like the code I pasted here.

@cebtenzzre
Copy link
Collaborator

Yeah, that seems a lot better. I think it would be prettier if 'getter' were always a regular method and not a function pointer - I would argue that const function pointers are an anti-pattern. So like:

static cty getter(const gguf_context * ctx, const int k) { return gfun(ctx, k); }

Also, I'm not a fan of the macro - if you want it to be less repetitive, you can add another class to the hierarchy (like the standard library does with std::true_type and std::false_type) - you can add whatever you'd like to Derp_Base_Type and its template parameters:

template <int type_id_>
struct Derp_Base_Type {
    static constexpr int type_id = type_id_;
};

template <typename T>
struct Derp_Base; // no implementation

template <> struct Derp_Base<int>:   Derp_Base_Type<1> {};
template <> struct Derp_Base<float>: Derp_Base_Type<2> {};

@KerfuffleV2
Copy link
Collaborator Author

Also, I'm not a fan of the macro - if you want it to be less repetitive, you can add another class to the hierarchy

How much do you hate it? :) I do want to be less repetitive, but it's not really the typeid part I'm trying to avoid with the macro but all the class boilerplate.

I'd really prefer to write:

MK_GKVBASE(uint8_t,      GGUF_TYPE_UINT8,   gguf_get_val_u8  );
MK_GKVBASE(uint16_t,     GGUF_TYPE_UINT16,  gguf_get_val_u16 );
MK_GKVBASE(uint32_t,     GGUF_TYPE_UINT32,  gguf_get_val_u32 );
MK_GKVBASE(uint64_t,     GGUF_TYPE_UINT64,  gguf_get_val_u64 );

instead of

template<> class GKV_Base<u8> {
    public:
    static constexpr gguf_type gt = GGUF_TYPE_UINT8;
    static u8 get(const gguf_context *ctx, const int k) { return gguf_get_val_u8(ctx, k); }
};
template<> class GKV_Base<u8> {
    public:
    static constexpr gguf_type gt = GGUF_TYPE_UINT8;
    static u8 get(const gguf_context *ctx, const int k) { return gguf_get_val_u8(ctx, k); }
};
template<> class GKV_Base<u8> {
    public:
    static constexpr gguf_type gt = GGUF_TYPE_UINT8;
    static u8 get(const gguf_context *ctx, const int k) { return gguf_get_val_u8(ctx, k); }
};
template<> class GKV_Base<u8> {
    public:
    static constexpr gguf_type gt = GGUF_TYPE_UINT8;
    static u8 get(const gguf_context *ctx, const int k) { return gguf_get_val_u8(ctx, k); }
};

@cebtenzzre
Copy link
Collaborator

Here is a more specific self-contained example of what I mean:

int   gguf_get_int  (const struct gguf_context * ctx, const int k) { return -1;    }
float gguf_get_float(const struct gguf_context * ctx, const int k) { return -1.0f; }

template <typename T>
using gguf_getter = T(const struct gguf_context * ctx, int k);

template <typename T, int gt_, gguf_getter<T> gfun>
struct GKV_Base_Type {
    static constexpr int gt = gt_;
    static T get(const struct gguf_context *ctx, const int k) { return gfun(ctx, k); }
};

template <typename T>
struct GKV_Base; // no implementation

template <> struct GKV_Base<int>:   GKV_Base_Type<int,   1, gguf_get_int>   {};
template <> struct GKV_Base<float>: GKV_Base_Type<float, 2, gguf_get_float> {};

You can do this with any information that can be stored in a template parameter (which is any constant or type).

llama.cpp Outdated
}

// This can't be uncommented.
// template<typename OT> static bool try_override(OT & target, const struct llama_model_kv_override *override) = delete;
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Here is a more specific self-contained example of what I mean

That helped a lot. I rewrote most of this stuff.

The try_override part is sort of weird, there's probably a better way to do that. The reason I'm jumping through hoops here is because I can't specialize just based on the return type.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The thing about this type of template overload with std::enable_if is that every one of them needs a std::enable_if that represents its use case - C++11 at least doesn't have a simple way that I know of to prioritize one template overload over another. If you do want to have a general fallback template, it needs to represent the inverse of the types that are allowed for any of the others - e.g. !is_integral and such.

llama.cpp Outdated
return true;
}

static bool set(const gguf_context * ctx, const char * key, std::string & target, const struct llama_model_kv_override *override = nullptr) {
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Having to write forwarding methods is also sort of annoying as well, so there's probably a better way.

@cebtenzzre
Copy link
Collaborator

I pushed a simplification that I believe addresses your comments. The templates look good to me.

@KerfuffleV2
Copy link
Collaborator Author

I pushed a simplification that I believe addresses your comments.

Living dangerously but you guessed correctly that I wasn't around. Thanks, I appreciate it! (I also should have thought of that.)

The templates look good to me.

Amazing, though now that the magical C++ stuff is bigger and more magical I have a weird feeling this is less likely to get merged than the original version. :)

Add informational output when overrides are applied

Warn user when an override with the wrong type is specified
Fix issue where overrides didn't apply when key missing in GGUF metadata
Resolve merge changes
@KerfuffleV2
Copy link
Collaborator Author

Okay, I think this is finally ready for review.

  1. Lots of cleanups thanks to cebtenzzre's help.
  2. Runs successfully with address sanitizing turned on.
  3. Since the gguf_type is now based on the target type, I double checked that every case of llama_model_loader.get_key has a target of the expected type.

This currently doesn't support overriding string or array types, but that could be added (though for arrays you'd probably want to load the override from a file or something). Being able to do something like override the vocab for a model could be useful.

The interface (llama_model_loader.get_key) doesn't currently support automatically fetching into an array target like ml.get_key(target, LLM_KV_MY_ARRAY) where target is a uint8_t * or std::vector<uint8_t> but that actually could be added pretty easily. You can fetch into an array info type that has the array item type, length and void * to the data.

The only potential issue I'm aware of in the current state is that overrides don't currently apply to slaren's funky fetch KV metadata as a string thing. I think the way it prints out the metadata values currently should show the original value in the actual model. If necessary I can make it so overrides apply to the stored string version (personally I'd rather store the original value and convert to a string if needed, storing it as a string seems weird to me).

@KerfuffleV2 KerfuffleV2 marked this pull request as ready for review November 18, 2023 10:15
@cebtenzzre cebtenzzre mentioned this pull request Nov 22, 2023
@cebtenzzre
Copy link
Collaborator

@ggerganov Have you taken a look at this PR? Kerfuffle said on Discord that he closed this due to lack of interest.

@cebtenzzre cebtenzzre reopened this Dec 2, 2023
@KerfuffleV2
Copy link
Collaborator Author

@cebtenzzre

Kerfuffle said on Discord that he closed this due to lack of interest.

Maybe it's weird but I still haven't changed my opinion. Perhaps I just need to completely rethink my concept of "interest". You'd better be careful, I think associating with me might be causing you to turn invisible too. Run, save yourself while you still can!

Joking aside, let's just close all these pulls again. If you or someone else wants to take any of them and make a pull request and do whatever with it, you have my blessing. Use the code in whole or part. However, I'd prefer not to have these pull requests open and owned by me because it's going to be confusing and people are going to think I'm the one to go to for questions, etc.

Copy link
Owner

@ggerganov ggerganov left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Let's merge after resolving the CI

p.s. sorry for the delay

Add note that metadata KV overrides aren't reflected in initial metadata KV info dump
@KerfuffleV2
Copy link
Collaborator Author

I rebased on master and fixed the one obvious issue (a call to GET_KEY that was added since the last rebase). I also added a note to the KV dump output that it doesn't currently take overrides into account.

Just going to cut and paste my summary of the current state from a different message:

And finally the override stuff: I think that one is in a pretty good state and was mergeworthy, at least back when I requested the second review around 2 weeks ago. I kept it up to date and it merged cleanly at least when I lasted looked at it but people may have added stuff that uses the metadata since then, and that would be using the old format not the new way to access the metadata. So it may be necessary to review the changes and see if anything needs to be adjusted. Also, that pull removed the normal accessor define (GET_KEY or whatever it was called) so stuff that tries to use it will merge but won't actually compile because that define no longer exists. The only other potential issue with that is how it works with the "access metadata as string stuff", right now the two things don't interact at all so slaren's thing will use/print out the metadata without taking any overrides into account. I think printing it out like that is fine, overrides probably should affect accessing the actual data though.


I compiled it, tested, seems to work. If merging is actually desired, it may be good to do a bit more testing just because I don't think anyone other than me ever really tested it (and a different person might think to test something I missed). Also it's been sitting there for a while and maybe there are interactions with other changes that occurred.

I'll let someone else do the actual merge if the feature/current implementation is actually wanted. I'm not trying to just force it through without consensus or anything like that.

@ggerganov
Copy link
Owner

The old GGUF_GET_KEY macro wasn't great so this refactoring is useful just for that.

I did a few tests and the overrides seem to work as expected. No need to add array and string override support for now - let's see if we encounter some specific use cases for these in the future

@ggerganov ggerganov merged commit 5aa365d into ggerganov:master Dec 5, 2023
35 checks passed
YellowRoseCx added a commit to YellowRoseCx/koboldcpp-rocm that referenced this pull request Dec 12, 2023
commit 53b5ae02cb1b533b78302422951bcfdeca6e2738
Author: YellowRoseCx <80486540+YellowRoseCx@users.noreply.github.com>
Date:   Tue Dec 12 12:08:29 2023 -0600

    mixtral fan service

commit 168b1d74e26d0321e2e89358303b6c33e8d7d33e
Merge: f13295b de15d4a6
Author: YellowRoseCx <80486540+YellowRoseCx@users.noreply.github.com>
Date:   Tue Dec 12 12:00:52 2023 -0600

    Merge branch 'kcpp-rocm-mixtral2' into main2

commit de15d4a632939a685ec12fa17355298542facf15
Merge: 74acc54 ea4402b
Author: YellowRoseCx <80486540+YellowRoseCx@users.noreply.github.com>
Date:   Tue Dec 12 11:45:19 2023 -0600

    Merge branch 'mixtral' into kcpp-rocm-mixtral

commit ea4402b
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Tue Dec 12 17:03:38 2023 +0200

    test-backend-ops : add one more sum_rows test

commit a51bc0c
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Tue Dec 12 15:55:42 2023 +0200

    metal : fix binary ops for ne10 % 4 != 0

commit 08eb991
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Tue Dec 12 14:14:15 2023 +0200

    metal : add cpy f16 -> f32 kernel

commit a742d9f
Author: slaren <slarengh@gmail.com>
Date:   Tue Dec 12 12:46:33 2023 +0100

    gguf-py : bump version

commit 6a419f4
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Tue Dec 12 13:04:33 2023 +0200

    convert : support safetensors format

commit 74acc54
Author: Concedo <39025047+LostRuins@users.noreply.github.com>
Date:   Tue Dec 12 10:53:34 2023 +0800

    Revert "Hide hipBLAS (ROCm) if CuBLAS exists - vice versa"

    This reverts commit 4b854d4.

commit f1cbfab
Author: slaren <slarengh@gmail.com>
Date:   Mon Dec 11 20:02:55 2023 +0100

    convert : fix style

commit 7dc75e3
Author: slaren <slarengh@gmail.com>
Date:   Mon Dec 11 20:00:28 2023 +0100

    convert : use 1e6 rope_freq_base for mixtral

commit 296c945
Author: slaren <slarengh@gmail.com>
Date:   Mon Dec 11 16:53:25 2023 +0100

    cuda : fix mul_mat_id with multi gpu

commit 33e50f1
Author: slaren <slarengh@gmail.com>
Date:   Mon Dec 11 12:27:48 2023 +0100

    test-backend-ops : disable MOE test with thread sanitizer

commit ffda94c
Author: slaren <slarengh@gmail.com>
Date:   Mon Dec 11 12:15:31 2023 +0100

    test-backend-ops : simplify and disable slow tests to avoid CI timeout

commit 06581f2
Author: Concedo <39025047+LostRuins@users.noreply.github.com>
Date:   Mon Dec 11 16:54:42 2023 +0800

    perf endpoint lets you monitor if the embedded horde worker has issues

commit fce971d
Author: Concedo <39025047+LostRuins@users.noreply.github.com>
Date:   Mon Dec 11 16:17:10 2023 +0800

    do not build the clblast noavx2 binary if not on windows

commit 8cbaed1
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Mon Dec 11 08:55:16 2023 +0200

    llama : fix hard-coded number of experts

commit 4b854d4
Author: YellowRoseCx <80486540+YellowRoseCx@users.noreply.github.com>
Date:   Sun Dec 10 22:49:35 2023 -0600

    Hide hipBLAS (ROCm) if CuBLAS exists - vice versa

commit b002981
Author: slaren <slarengh@gmail.com>
Date:   Mon Dec 11 02:43:52 2023 +0100

    test-backend-ops : fix dequantize block offset

commit f1380d7
Author: slaren <slarengh@gmail.com>
Date:   Sun Dec 10 22:58:31 2023 +0100

    test-backend-ops : add cpy from f32 -> all types test

commit 54d254b
Author: slaren <slarengh@gmail.com>
Date:   Sun Dec 10 21:52:11 2023 +0100

    test-backend-ops : cleanup, add moe test for batches

commit e2cf3b7
Author: henk717 <henk@henk.tech>
Date:   Sun Dec 10 14:30:17 2023 +0100

    koboldcpp.sh - The Mamba Multitool (LostRuins#554)

    * .sh script V1

    * koboldcpp.sh polish

    * koboldcpp.sh dist generator

    * Include html's in dist

    * RWKV in Linux Dist

    * Lower dependency requirements

    * Eliminate wget dependency

    * More distinct binary name

    I know its technically amd64, but I don't want to cause confusion among nvidia users.

    * Use System OpenCL

    Unsure how this will behave in the pyinstaller build, but pocl ended up CPU only. With a bit of luck the pyinstaller uses the one from the actual system if compiled in a system without opencl, while conda now includes it for that specific system.

    * Add cblas dependency

    Missing this causes compile failures on some system's

    * ICD workaround

    Ideally we find a better solution, but conda forces ICD and needs this for the successful compile. However, pyinstaller then embeds the ICD causing it to be limited to the system it was compiled for. By temporarily removing the ICD pyinstaller can't find it and everything remains functional. Ideally we do this on a pyinstaller level, but I could not find any good options to do so yet.

    ---------

    Co-authored-by: root <root@DESKTOP-DQ1QRAG>

commit 54ba263
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Sun Dec 10 15:27:41 2023 +0200

    test-backend-ops : make experts more evenly probable (test_moe)

commit b0b83dd
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Sun Dec 10 14:30:38 2023 +0200

    metal : fix ggml_mul_mat_id for F32

commit 65923a8
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Sun Dec 10 14:17:46 2023 +0200

    convert : determine n_ctx correctly

commit 8614aa7
Author: slaren <slarengh@gmail.com>
Date:   Sun Dec 10 13:12:11 2023 +0100

    cuda : fix get_rows when ncols is odd

commit cefebb3
Author: slaren <slarengh@gmail.com>
Date:   Sun Dec 10 13:11:39 2023 +0100

    test-backend-ops : add moe test

commit e640cbe
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Sun Dec 10 13:57:54 2023 +0200

    llama : add n_expert and n_expert_used to hparams + change quants

commit d1259b7
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Sun Dec 10 13:00:13 2023 +0200

    llama : do not quantize expert gating tensors

commit 6cfb31f
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Sun Dec 10 10:59:13 2023 +0200

    metal : add indirect mat-vec kernels for all quantization types

commit 016f9bb
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Sun Dec 10 09:38:21 2023 +0200

    metal : fix ggml_get_rows to work with non-cont src1

commit 0710b0f
Author: slaren <slarengh@gmail.com>
Date:   Sat Dec 9 23:29:47 2023 +0100

    llama : offload missing ffn_moe_silu

commit 62b95f9
Author: slaren <slarengh@gmail.com>
Date:   Sat Dec 9 22:39:34 2023 +0100

    cuda : support non-contiguous src1 in get_rows

commit 2e4db48
Author: slaren <slarengh@gmail.com>
Date:   Sat Dec 9 22:38:22 2023 +0100

    ggml : update get_rows f16 and q

commit ac3f7d8
Author: slaren <slarengh@gmail.com>
Date:   Sat Dec 9 19:19:03 2023 +0100

    ggml : get_rows : support non-contiguos tensors with gaps, generalize up to 3D

commit 8c5b66e
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Sat Dec 9 15:30:34 2023 +0200

    metal : reduce the kernel launches for ggml_mul_mat_id

commit 7e2006b
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Sat Dec 9 14:24:58 2023 +0200

    metal : add/mul/div use general kernel when src1 not cont

commit 06dfde3
Author: slaren <slarengh@gmail.com>
Date:   Sat Dec 9 13:21:09 2023 +0100

    llama : add basic support for offloading moe with CUDA

commit 2cbcba8
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Sat Dec 9 14:18:42 2023 +0200

    metal : add more general support for ggml_get_rows + tests

commit 9064b1c
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Sat Dec 9 14:04:54 2023 +0200

    ggml : fix ggml_get_rows to take into account ne02 / ne11

commit ee8fb39
Author: slaren <slarengh@gmail.com>
Date:   Sat Dec 9 12:42:25 2023 +0100

    ggml : add n_as argument to ggml_mul_mat_id

commit 7372b62
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Sat Dec 9 13:18:58 2023 +0200

    ggml : ggml_get_rows support 2D indexing [n_tokens, n_experts] (cpu only)

commit 8b185b7
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Sat Dec 9 13:01:42 2023 +0200

    llama : fix expert weighting in the FFN

commit 7ea3695
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Sat Dec 9 12:45:15 2023 +0200

    llama : first working version

commit af1a096
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Sat Dec 9 12:07:39 2023 +0200

    llama : fix cur -> cur_expert

commit aedfad1
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Sat Dec 9 11:47:40 2023 +0200

    llama : update graph to support MoE

commit 861cd67
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Sat Dec 9 11:19:46 2023 +0200

    ggml : sync latest ggml_mul_mat_id

commit a3eefe9
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Sat Dec 9 11:14:03 2023 +0200

    llama : model loading

commit d38e41e
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Sat Dec 9 10:59:37 2023 +0200

    convert : fix n_ff typo

commit dff8cbe
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Sat Dec 9 10:51:58 2023 +0200

    convert : support Mixtral as LLAMA arch

commit 7a69152
Author: Concedo <39025047+LostRuins@users.noreply.github.com>
Date:   Fri Dec 8 21:06:32 2023 +0800

    lowvram var defaults

commit 7418bca
Author: Concedo <39025047+LostRuins@users.noreply.github.com>
Date:   Fri Dec 8 19:20:30 2023 +0800

    up ver

commit c47bc28
Author: Concedo <39025047+LostRuins@users.noreply.github.com>
Date:   Fri Dec 8 18:35:45 2023 +0800

    slight refactor for noscript ui

commit 7469f20
Author: Concedo <39025047+LostRuins@users.noreply.github.com>
Date:   Fri Dec 8 18:16:14 2023 +0800

    use lowvram flag for offload qkv

commit ec21fa7
Merge: 930cdfb fe680e3
Author: Concedo <39025047+LostRuins@users.noreply.github.com>
Date:   Fri Dec 8 17:42:26 2023 +0800

    Merge branch 'master' into concedo_experimental

    # Conflicts:
    #	.github/workflows/build.yml
    #	.gitignore
    #	CMakeLists.txt
    #	Makefile
    #	Package.swift
    #	README.md
    #	ggml-cuda.cu
    #	llama.cpp
    #	llama.h
    #	scripts/sync-ggml.sh
    #	tests/CMakeLists.txt

commit 930cdfb
Author: Concedo <39025047+LostRuins@users.noreply.github.com>
Date:   Fri Dec 8 16:53:30 2023 +0800

    updated lite, added patch that links to noscript mode

commit fe680e3
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Thu Dec 7 22:26:54 2023 +0200

    sync : ggml (new ops, tests, backend, etc.) (ggerganov#4359)

    * sync : ggml (part 1)

    * sync : ggml (part 2, CUDA)

    * sync : ggml (part 3, Metal)

    * ggml : build fixes

    ggml-ci

    * cuda : restore lost changes

    * cuda : restore lost changes (StableLM rope)

    * cmake : enable separable compilation for CUDA

    ggml-ci

    * ggml-cuda : remove device side dequantize

    * Revert "cmake : enable separable compilation for CUDA"

    This reverts commit 09e35d0.

    * cuda : remove assert for rope

    * tests : add test-backend-ops

    * ggml : fix bug in ggml_concat

    * ggml : restore `ggml_get_n_tasks()` logic in `ggml_graph_plan()`

    * ci : try to fix macOS

    * ggml-backend : remove backend self-registration

    * ci : disable Metal for macOS cmake build

    ggml-ci

    * metal : fix "supports family" call

    * metal : fix assert

    * metal : print resource path

    ggml-ci

    ---------

    Co-authored-by: slaren <slarengh@gmail.com>

commit bcc0eb4
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Thu Dec 7 13:03:17 2023 +0200

    llama : per-layer KV cache + quantum K cache (ggerganov#4309)

    * per-layer KV

    * remove unnecessary copies

    * less code duplication, offload k and v separately

    * llama : offload KV cache per-layer

    * llama : offload K shift tensors

    * llama : offload for rest of the model arches

    * llama : enable offload debug temporarily

    * llama : keep the KV related layers on the device

    * llama : remove mirrors, perform Device -> Host when partial offload

    * common : add command-line arg to disable KV cache offloading

    * llama : update session save/load

    * llama : support quantum K cache (ggerganov#4312)

    * llama : support quantum K cache (wip)

    * metal : add F32 -> Q8_0 copy kernel

    * cuda : add F32 -> Q8_0 copy kernel

    ggml-ci

    * cuda : use mmv kernel for quantum cache ops

    * llama : pass KV cache type through API

    * llama : fix build

    ggml-ci

    * metal : add F32 -> Q4_0 copy kernel

    * metal : add F32 -> Q4_1 copy kernel

    * cuda : wip

    * cuda : add F32 -> Q4_0 and F32 -> Q4_1 copy kernels

    * llama-bench : support type_k/type_v

    * metal : use mm kernel only for quantum KV cache

    * cuda : add comment

    * llama : remove memory_f16 and kv_f16 flags

    ---------

    Co-authored-by: slaren <slarengh@gmail.com>

    * readme : add API change notice

    ---------

    Co-authored-by: slaren <slarengh@gmail.com>

commit 81bc921
Author: Hongyu Ouyang <96765450+casavaca@users.noreply.github.com>
Date:   Thu Dec 7 02:25:22 2023 -0800

    train : fix ggerganov#4227 (double free in examples/train-text-from-scratch/train-text-from-scratch.cpp) (ggerganov#4351)

    On commit b1108 (44c117f) xaedes added

        ggml_allocr * alloc = NULL;

        ... (many lines in between)

        if (alloc) {
            ggml_allocr_free(alloc);
        }

    Which is correct, but it's easy to lose context after many lines in between.

    On commit b1287 (0e76a899) xaedes made a big change. From here on, alloc is freed eagerly.

        alloc = ggml_allocr_new(...)
        ... (short lines of code)
        ggml_allocr_free(alloc)

    This happens a few times, but alloc is never set to NULL, and many lines below,
    we still have

        if (alloc) {
            ggml_allocr_free(alloc);
        }

    which causes a double-free.

commit 05cd6e5
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Wed Dec 6 20:21:59 2023 +0200

    server : recognize cache_prompt parameter in OAI API (ggerganov#4347)

commit c751152
Author: Concedo <39025047+LostRuins@users.noreply.github.com>
Date:   Thu Dec 7 00:52:25 2023 +0800

    noscript mode is done

commit 12002d8
Author: Concedo <39025047+LostRuins@users.noreply.github.com>
Date:   Wed Dec 6 17:51:08 2023 +0800

    very basic noscript mode

commit caa9249
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Wed Dec 6 10:41:03 2023 +0200

    common : fix compile warning

commit da5eaef
Author: stduhpf <stephduh@live.fr>
Date:   Wed Dec 6 09:08:17 2023 +0100

    speculative : support `--color` (ggerganov#4343)

    * speculative: add some colors

    * minor : add braces

    ---------

    Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

commit 5f6e0c0
Author: Marcus Dunn <51931484+MarcusDunn@users.noreply.github.com>
Date:   Tue Dec 5 10:55:12 2023 -1000

    grammar : pre-computed pieces + reserve mem + less string copies (ggerganov#4330)

    * reserve space for codepoints

    * improvement for the appended 0

    * used precomputed token text for grammar sample

    * reserve canidates_decoded

    * reserve canidates_grammar

    * remove candidates_decoded

    * Revert "remove candidates_decoded"

    This reverts commit 3773328.

    * changed decode_utf8 to take src by ref

commit 5aa365d
Author: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
Date:   Tue Dec 5 10:19:18 2023 -0700

    llama : allow overriding GGUF metadata when loading model (ggerganov#4092)

    * feat: Allow overriding GGUF metadata when loading model

    * Fix the one time GCC is stricter than clang about something

    * Step1

    * Refactor... basically everything!

    * Nuke obsolete GetArrayLen struct

    * simplify std::string specialization

    * Various cleanups

    Add informational output when overrides are applied

    Warn user when an override with the wrong type is specified

    * Fix broken logic for parsing bool KV overrides
    Fix issue where overrides didn't apply when key missing in GGUF metadata
    Resolve merge changes

    * llama : rearrange model params

    * Update new GET_KEY call

    Add note that metadata KV overrides aren't reflected in initial metadata KV info dump

    ---------

    Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
    Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

commit b6f952f
Author: Concedo <39025047+LostRuins@users.noreply.github.com>
Date:   Tue Dec 5 21:08:10 2023 +0800

    improved exit logic

commit 52c8bc3
Author: MaggotHATE <clay1326@gmail.com>
Date:   Tue Dec 5 15:05:51 2023 +0500

    sampling : custom samplers order (ggerganov#4285)

    * Samplers sequence order w parameter

    * Cleaned commented code

    * Fixed formatting

    * Rewrote with unordered_map

    * Revert and rewrite, too many problems and safeguards would be needed

    * Fixed code style

    * Code style fixes according to review

    * More readable samplers input string, fixed help

    * Style fix in sampler_queue

    * Formatting fixes

    * Fixing whitespaces

commit e4b76bb
Author: kchro3 <62481661+kchro3@users.noreply.github.com>
Date:   Mon Dec 4 23:29:46 2023 -0800

    swift : revert compiler checks for swift package (ggerganov#4332)

commit 23b5e12
Author: Daniel Bevenius <daniel.bevenius@gmail.com>
Date:   Mon Dec 4 17:04:21 2023 +0100

    simple : update error message for KV cache check (ggerganov#4324)

    This commit updates the error message that is printed when the
    KV cache is not big enough to hold all the prompt and generated
    tokens. Specifically it removes the reference to n_parallel and
    replaces it with n_len.

    Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

commit d208995
Author: Miwa / Ensan <63481257+ensan-hcl@users.noreply.github.com>
Date:   Tue Dec 5 01:03:49 2023 +0900

    swift : fix concatenation method to avoid invalid UTF8 stringfication (ggerganov#4325)

commit 5c9f90c
Author: Miwa / Ensan <63481257+ensan-hcl@users.noreply.github.com>
Date:   Mon Dec 4 22:43:45 2023 +0900

    swift : fix prompt tokenization logic (ggerganov#4321)

commit a5a5839
Author: Concedo <39025047+LostRuins@users.noreply.github.com>
Date:   Mon Dec 4 21:10:42 2023 +0800

    handle accidentally selecting a kcpps file as model instead

commit 4fa44e8
Author: Ikko Eltociear Ashimine <eltociear@gmail.com>
Date:   Mon Dec 4 16:57:35 2023 +0900

    grammar-parser : fix typo (ggerganov#4318)

    preceeding -> preceding

commit 8602f5a
Merge: ac36aee fbbc428
Author: Concedo <39025047+LostRuins@users.noreply.github.com>
Date:   Sun Dec 3 22:00:14 2023 +0800

    Merge branch 'master' into concedo_experimental

commit fbbc428
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Sun Dec 3 15:56:35 2023 +0200

    ggml : reuse ggml_get_n_tasks() in ggml_graph_plan() (ggerganov#4308)

    * ggml : fix soft max out-of-bounds access

    ggml-ci

    * ggml : reuse ggml_get_n_tasks() in ggml_graph_plan()

    ggml-ci

commit ac36aee
Merge: 48544cd 33e171d
Author: Concedo <39025047+LostRuins@users.noreply.github.com>
Date:   Sun Dec 3 21:56:29 2023 +0800

    Merge branch 'master' into concedo_experimental

    # Conflicts:
    #	CMakeLists.txt
    #	Makefile

commit adf3de4
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Sun Dec 3 15:56:22 2023 +0200

    ggml : fix soft max out-of-bounds access (ggerganov#4307)

    ggml-ci

commit 48544cd
Author: Concedo <39025047+LostRuins@users.noreply.github.com>
Date:   Sun Dec 3 21:46:50 2023 +0800

    Revert "Revert "ggml : add ggml_soft_max_ext (ggerganov#4256)""

    This reverts commit a8e66ef.

commit 33e171d
Author: Ed Lee <edilee@mozilla.com>
Date:   Sun Dec 3 01:10:43 2023 -0800

    server : fix OpenAI API `stop` field to be optional (ggerganov#4299)

    (cherry picked from commit Mozilla-Ocho/llamafile@e8c92bc)

commit 6949b50
Author: Rickard Edén <rickardeden@gmail.com>
Date:   Sun Dec 3 10:03:25 2023 +0100

    py : add grammar to oai like api (ggerganov#4294)

commit d7b800b
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Sun Dec 3 10:58:16 2023 +0200

    llama : pad KV cache size (ggerganov#4280)

    * llama : pad KV cache size to 32

    * metal : try to improve batched decoding

commit 6570a20
Author: Concedo <39025047+LostRuins@users.noreply.github.com>
Date:   Sun Dec 3 15:44:53 2023 +0800

    token count includes ids

commit 5a7d312
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Fri Dec 1 20:39:12 2023 +0200

    llama : avoid using "optional" keyword (ggerganov#4283)

commit d5a1cbd
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Fri Dec 1 20:35:03 2023 +0200

    llama : support optional tensors (ggerganov#4283)

commit b220222
Author: Miwa / Ensan <63481257+ensan-hcl@users.noreply.github.com>
Date:   Sat Dec 2 03:19:45 2023 +0900

    swift : fix token_to_piece implementation (ggerganov#4278)

    * Fix token_to_piece implementation in Swift

    * Fix errors

commit 511f52c
Author: Jared Van Bortel <jared@nomic.ai>
Date:   Fri Dec 1 13:18:35 2023 -0500

    build : enable libstdc++ assertions for debug builds (ggerganov#4275)

commit 03562f3
Author: CausalLM <148736309+CausalLM@users.noreply.github.com>
Date:   Sat Dec 2 02:17:06 2023 +0800

    llama : support attention bias on LLaMA architecture (ggerganov#4283)

    * Support attention_bias on LLaMA architecture

    QKVO bias, should fix InternLM (ggerganov#3133) and works for LLaMAfied Qwen models (ggerganov#3743 (comment)).

    * check existence of qkvo bias while loading llama models

    Tested on LLaMA2, CUDA and CPU.

    * Update llama.cpp

commit 37c746d
Author: Shijie <821898965@qq.com>
Date:   Sat Dec 2 02:16:31 2023 +0800

    llama : add Qwen support (ggerganov#4281)

    * enable qwen to llama.cpp

    * llama : do not GPU split bias tensors

    ---------

    Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

commit 880f579
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Fri Dec 1 18:42:11 2023 +0200

    llama : fix integer overflow during quantization (ggerganov#4284)

    happens with multi-threaded quantization of Qwen-72B

    ggml-ci
@slaren slaren mentioned this pull request Dec 13, 2023
3 tasks
hodlen added a commit to hodlen/llama.cpp that referenced this pull request Apr 1, 2024
llama : restore prefix space in llama tokenizer (ggerganov#4081)

gguf : fix potential infinite loops while parsing (ggerganov#4100)

Co-authored-by: Bernhard Gstrein <gstrein@cs.uni-freiburg.de>

Respect tokenizer.ggml.add_bos_token value when tokenizing (ggerganov#4040)

* gguf-py: gguf-dump: Respect --no-tensor flag in JSON mode.

* Respect add_bos_token GGUF metadata value

* gguf-py: Try to fix SpecialVocab giving up too easily for the Nth time

llama : fix data units (ggerganov#4101)

* llama : fix data units

ggml-ci

* Revert "llama : fix data units"

This reverts commit f5feac8.

* llama : disambiguate data units

ggml-ci

cuda : get_row_rounding F32 (ggerganov#4095)

* Fix ggerganov#4017

* Update ggml-cuda.cu

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* Update ggml-cuda.cu

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

---------

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

finetune : zero the loraB initial vectors (ggerganov#4082)

* finetune : zero the loraB initial vectors

Without this, the first iteration is starting out far from the base model, instead of exactly on it.
Zeroing loraB is what the paper recommends. loralib also zeroes at least one of the init vector pairs
(though it departs from the paper in using a different distribution for the other vector, in some cases).

* tabs to spaces

* Use ggml_set_zero instead of adding a new function

finetune : speed-up ggml_compute_forward_out_prod_f32 via BLAS (ggerganov#4079)

* Remove logically superfluous assertions and order by dimension

* Use cblas_sgemm() to implement ggml_compute_forward_out_prod()

* Remove ggml_compute_forward_out_prod_use_blas(), fix compiling errors on cmake/zig, remove trailing whitespace

* Add openBLAS support for sgemm() in compute_forward_out_prod()

llama : add functions to get the model's metadata (ggerganov#4013)

* llama : add functions to get the model's metadata

* format -> std::to_string

* better documentation

train : move number of gpu layers argument parsing to common/train.cpp (ggerganov#4074)

- introduces help entry for the argument
 - cuts '--gpu-layers' form in order to simplify usage and documentation.

Signed-off-by: Jiri Podivin <jpodivin@gmail.com>
Co-authored-by: Jiri Podivin <jpodivin@redhat.com>

py : remove superfluous import statements (ggerganov#4076)

Signed-off-by: Jiri Podivin <jpodivin@gmail.com>
Co-authored-by: Jiri Podivin <jpodivin@redhat.com>

llava : fix compilation warning that fread return value is not used (ggerganov#4069)

common : improve yaml log escaping (ggerganov#4080)

* logging: improve escaping in yaml output

* logging: include review feedback

py : Falcon HF compatibility (ggerganov#4104)

Falcon HF compatibility

convert : use 'model' value if it exists. This allows karpathy/tinyllamas to load (ggerganov#4089)

Co-authored-by: Don Mahurin <@>

examples : add tokenize (ggerganov#4039)

tokenize : fix trailing whitespace

build : support ppc64le build for make and CMake (ggerganov#3963)

* build: support ppc64le build for make and CMake

* build: keep __POWER9_VECTOR__ ifdef and extend with __powerpc64__

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

llama : increase max nodes (ggerganov#4115)

Clean up ggml-cuda.cu warnings when compiling with clang (for ROCM) (ggerganov#4124)

* ggml-cuda.cu: Clean up warnings when compiling with clang

* ggml-cuda.cu: Move static items into anonymous namespace

* ggml-cuda.cu: Fix use of namespace start macro

* Revert "ggml-cuda.cu: Fix use of namespace start macro"

This reverts commit 26c1149.

* Revert "ggml-cuda.cu: Move static items into anonymous namespace"

This reverts commit e29757e.

scripts : Remove missed baichuan convert script (ggerganov#4127)

tokenize example: Respect normal add BOS token behavior (ggerganov#4126)

Allow building with Makefile

gguf-py : export chat templates (ggerganov#4125)

* gguf-py : export chat templates

* llama.cpp : escape new lines in gguf kv info prints

* gguf-py : bump version

* gguf-py : check chat_template type

* gguf-py : initialize chat_template

gitignore : tokenize

common : comma should be semicolon (ggerganov#4137)

server : relay error messages (ggerganov#4131)

finetune : add --n-gpu-layers flag info to --help (ggerganov#4128)

Revert "finetune : add --n-gpu-layers flag info to --help (ggerganov#4128)"

This reverts commit 05e8301.

speculative : fix prompt tokenization in speculative example (ggerganov#4025)

* Support special tokens and not adding BOS to prompt in speculative

* Adapt to new should_add_bos function

* Ensure tgt and dft have same add_bos setting

ci : add flake8 to github actions (python linting) (ggerganov#4129)

Disabled rules:

* E203 Whitespace before ':' - disabled because we often use 'C' Style where values are aligned

* E211 Whitespace before '(' (E211) - disabled because we often use 'C' Style where values are aligned

* E221 Multiple spaces before operator - disabled because we often use 'C' Style where values are aligned

* E225 Missing whitespace around operator - disabled because it's broken so often it seems like a standard

* E231 Missing whitespace after ',', ';', or ':' - disabled because we often use 'C' Style where values are aligned

* E241 Multiple spaces after ',' - disabled because we often use 'C' Style where values are aligned

* E251 Unexpected spaces around keyword / parameter equals - disabled because it's broken so often it seems like a standard

* E261 At least two spaces before inline comment - disabled because it's broken so often it seems like a standard

* E266 Too many leading '#' for block comment - sometimes used as "section" separator

* E501 Line too long - disabled because it's broken so often it seems like a standard

* E701 Multiple statements on one line (colon) - broken only in convert.py when defining abstract methods (we can use# noqa instead)

* E704 Multiple statements on one line - broken only in convert.py when defining abstract methods (we can use# noqa instead)

main : Add ChatML functionality to main example (ggerganov#4046)

Co-authored-by: Sebastian Cramond <sebby37@users.noreply.github.com>

readme : update ROCm Windows instructions (ggerganov#4122)

* Update README.md

* Update README.md

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

---------

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

finetune - update readme to mention llama support only (ggerganov#4148)

stablelm : simplify + speedup generation (ggerganov#4153)

docs : add llama-star arch idea

examples : fix typo in parallel example doc comment (ggerganov#4181)

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

readme : update hot topics

llama : KV cache view API + better KV cache management (ggerganov#4170)

* llama : keep track of used KV cells + better KV cache management

* llama : zero KV cache used upon clear

ggml-ci

* llama : allow exporting a view of the KV cache (ggerganov#4180)

* Allow exporting a view of the KV cache

* Allow dumping the sequences per cell in common

* Track max contiguous cells value and position as well

* Fix max contiguous empty cells index calculation

Make dump functions deal with lengths or sequences counts > 10 better

* Fix off by one error in dump_kv_cache_view

* Add doc comments for KV cache view functions

Eliminate cell sequence struct; use llama_seq_id directly

Minor cleanups

* common : add -dkvc arg for enabling kv cache dumps

---------

Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>

Fix incorrect format strings and uninitialized variables. (ggerganov#4133)

* Fix incorrect format strings and uninitialized variables.

* Address comments

* Add the missing include statement

readme : use PATH for Windows ROCm (ggerganov#4195)

* Update README.md to use PATH for Windows ROCm

* Update README.md

* Update README.md

main.swift : fix eos checking (ggerganov#4197)

llama_token_eos(const struct llama_model *) is currently getting struct llama_context type variable context as a parameter.

convert : fix tensors using grad in some models (ggerganov#4173)

ggml-cuda : support stablelm rope (ggerganov#4156)

* ggml-cuda : support stablelm rope

* remove unused freq_base kernel parameter

* add n_dims parameter to llm_build_k_shift, default to n_rot via overload

* llama : fix llm_build_k_shift args

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

llama : set metal log callback correctly (ggerganov#4204)

server : OAI API compatibility (ggerganov#4198)

* Add openai-compatible POST /v1/chat/completions API endpoint to server example

* fix code style

* Update server README.md

* Improve server README.md

* Fix server.cpp code style according to review

* server : some style changes

* server : indentation

* server : enable special tokens during tokenization by default

* server : minor code style

* server : change random string generator

* straightforward /v1/models endpoint

---------

Co-authored-by: kir-gadjello <111190790+kir-gadjello@users.noreply.github.com>
Co-authored-by: Tobi Lütke <tobi@Tobis-MacBook-Pro.local>

readme : update hot topics

Update docs for yarn_ext_factor <0.0 as unspecified instead of NaN (ggerganov#4189)

llama : grammar `reserve` space in `decode_utf8` (ggerganov#4210)

* reserve space for codepoints

* improvement for the appended 0

scripts : Use mmap in torch load (ggerganov#4202)

* Use mmap in torch load, prefer .bin files when loading

* Revert .bin > .safetensors preference

metal : fix yarn (ggerganov#4220)

get the correct n_orig_ctx in metal

lookahead : add example for lookahead decoding (ggerganov#4207)

* lookahead : init

* lookahead : generate and store n-grams

* lookahead : use loop instead recursion to generate n-grams

* lookahead : initial working implementation

* lookahead : filter repeating n-grams

* lookahead : use deterministic init

* lookahead : add to Makefile

* lookahead : fix a bug in the seq_id of the lookahead tokens

* lookahead : add comments

---------

Co-authored-by: slaren <slarengh@gmail.com>

readme : update hot topics

lookahead : support `-n -1` infinite generation

ggml : fix -Warray-bounds warning with gcc (ggerganov#4231)

examples : iOS example with swift ui (ggerganov#4159)

* copy to llama.cpp as subdir

* attempt enabling metal, fails

* ggml metal compiles!

* Update README.md

* initial conversion to new format, utf8 errors?

* bug fixes, but now has an invalid memory access :(

* added O3, now has insufficient memory access

* begin sync with master

* update to match latest code, new errors

* fixed it!

* fix for loop conditionals, increase result size

* fix current workflow errors

* attempt a llama.swiftui workflow

* Update .github/workflows/build.yml

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

readme : add Amica to UI list (ggerganov#4230)

cmake : fix issue with version info not getting baked into LlamaConfig.cmake (ggerganov#3970)

* Split CPP generation from build-info query

* Remove blank lines

* Add BUILD_SHARED_LIBS option

ggml : re-enable BLAS for CPU when src0 != F32 + remove redundant full offload checks in llama.cpp (ggerganov#4240)

* ggml : use blas even if src0 is not F32

* llama : use n_threads_batch only when n_tokens >= 32

ggml-ci

* llama : revert n_threads_batch logic

ggml-ci

ggml : restore abort() in GGML_ASSERT (ggerganov#4242)

readme : add FreeChat (ggerganov#4248)

examples : add readme files

py : fix oai proxy (ggerganov#3972)

* fix oai proxy

fix generation not stoped while bot stop talking in chat mode

fix possible `slot_id` not exist

response for cors (and pre flight)

* oai proxy: workaround for some client (such as Chatbox)

* use stop as separator to replace hardcoded `\n`

llama : fix typical sampling (ggerganov#4261)

Typical sampling was broken because after copying new_candidates into canditates, the "sorted" bool is left at "true", but the new data is no longer sorted according to probability. Patch to set "sorted" to false.

Test: Generating with temp=0.0001 (approx. argmax)  should generate the same sequence at typical>=1.0 and typical=0.9999 (approx. disabled, but enters the typical sampling codepath).

convert.py : fix llama/llama2 conversion due to vocab_size=-1 (ggerganov#4258)

llama : fix alignment of general.name in print meta (ggerganov#4254)

* llama: fix alignment of general.name in print meta

This commit fixes the alignment of the general.name field in the
llm_load_print_meta function.

Currently the output looks like this:
```console
llm_load_print_meta: model ftype      = mostly Q4_0
llm_load_print_meta: model params     = 13.02 B
llm_load_print_meta: model size       = 6.86 GiB (4.53 BPW)
llm_load_print_meta: general.name   = LLaMA v2
```
And with this commit it looks like this:
```console
llm_load_print_meta: model ftype      = mostly Q4_0
llm_load_print_meta: model params     = 13.02 B
llm_load_print_meta: model size       = 6.86 GiB (4.53 BPW)
llm_load_print_meta: general.name     = LLaMA v2
```

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

* llama: fix alignment of special tokens

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

---------

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

readme : fix typo (ggerganov#4253)

llama.cpp uses GitHub Actions, not Gitlab Actions.

cmake : fix the metal file foder path (ggerganov#4217)

batched.swift : update README.md (ggerganov#4214)

docs: update how to run

docker : add finetune option (ggerganov#4211)

readme : fix (ggerganov#4135)

* fix: readme

* chore: resolve comments

* chore: resolve comments

main : pass LOG_TEE callback to llama.cpp log (ggerganov#4033)

* main : Call llama_log_set to use LOG_TEE

* tabs to spaces

llava : ShareGPT4V compatibility (vision encoder only loading) (ggerganov#4172)

* ShareGPT4 compatibility (vision encoder only loading)

Load only a CLIP vision encoder (as supplied by ShareGPT finetunes)
Corrects the argument parsing for --img_mean and --img_std (which were previously not parsed but attempted to access)
Defines defaults for img_mean and img_std which are equal to the llava 1.5 CLIP encoder, so you do not have to provide them

* Update convert-image-encoder-to-gguf.py

build : fix build info generation and cleanup Makefile (ggerganov#3920)

* cmake : fix joining of REAL_GIT_DIR

* fix includes with help from include-what-you-use

* make : remove unneeded deps and add test-rope target

* fix C includes in C++ source files

* Revert "fix includes with help from include-what-you-use"

This reverts commit 635e9fa.

make : fix Apple clang determination bug (ggerganov#4272)

Co-authored-by: Will Findley <findley@gmail.com>

server : add single-client multi-prompt support (ggerganov#4232)

* * add multiprompt support

* * cleanup

* * more cleanup

* * remove atomicity of id_gen, and change lock_guard to unique_lock on completion requests

* * remove all references to mutex_multitasks

* Update examples/server/server.cpp

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* Update examples/server/server.cpp

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* Update examples/server/server.cpp

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* Update examples/server/server.cpp

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* * change to set

---------

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

server : add --log-disable to disable logging to file (ggerganov#4260)

* * add --log-disable to disable logging to file in the server example

* * typo fix

ggml : add ggml_soft_max_ext (ggerganov#4256)

* metal : implement soft_max_ext

* cuda : implement soft_max_ext

* ggml : implement soft_max_ext (CPU)

* batched-bench : print threads

ggml-ci

* metal : simplify soft_max encoding

ggml-ci

* cuda : use 512 threads for soft_max instead of 32

* ggml : update soft max cpu

* cuda : do warp-based block reduce

* cuda : increase max block size to 1024

* cuda : fix warp reduction initialization of shared mem

* metal : warp-based reduction for soft max kernel

* metal : warp-based reduce for rms_norm

* metal : simplify soft max kernel

ggml-ci

* alloc : fix build with debug

py : add requirements file for convert-hf-to-gguf.py (ggerganov#4277)

This commit adds a requirements file for the convert-hf-to-gguf.py
script, and also add the torch and transformers packages to it.

The motivation for this is that currently running convert-hf-to-gguf.py
will produce the following error:
```console
$ python3 -m venv venv
$ source venv/bin/activate
(venv) $ pip install -r requirements.txt
Collecting numpy==1.24.4
Collecting sentencepiece==0.1.98
Collecting gguf>=0.1.0
Installing collected packages: sentencepiece, numpy, gguf
Successfully installed gguf-0.5.1 numpy-1.24.4 sentencepiece-0.1.98

(venv) $ python convert-hf-to-gguf.py --help
Traceback (most recent call last):
  File "llama.cpp/convert-hf-to-gguf.py", line 16, in <module>
    import torch
ModuleNotFoundError: No module named 'torch'
```
With this commit, and using requirements-hf-to-gguf.txt instead of
requirements.txt, the script can be run and shows the help output.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

llama : fix integer overflow during quantization (ggerganov#4284)

happens with multi-threaded quantization of Qwen-72B

ggml-ci

llama : add Qwen support (ggerganov#4281)

* enable qwen to llama.cpp

* llama : do not GPU split bias tensors

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

llama : support attention bias on LLaMA architecture (ggerganov#4283)

* Support attention_bias on LLaMA architecture

QKVO bias, should fix InternLM (ggerganov#3133) and works for LLaMAfied Qwen models (ggerganov#3743 (comment)).

* check existence of qkvo bias while loading llama models

Tested on LLaMA2, CUDA and CPU.

* Update llama.cpp

build : enable libstdc++ assertions for debug builds (ggerganov#4275)

swift : fix token_to_piece implementation (ggerganov#4278)

* Fix token_to_piece implementation in Swift

* Fix errors

llama : support optional tensors (ggerganov#4283)

llama : avoid using "optional" keyword (ggerganov#4283)

llama : pad KV cache size (ggerganov#4280)

* llama : pad KV cache size to 32

* metal : try to improve batched decoding

py : add grammar to oai like api (ggerganov#4294)

server : fix OpenAI API `stop` field to be optional (ggerganov#4299)

(cherry picked from commit Mozilla-Ocho/llamafile@e8c92bc)

ggml : fix soft max out-of-bounds access (ggerganov#4307)

ggml-ci

ggml : reuse ggml_get_n_tasks() in ggml_graph_plan() (ggerganov#4308)

* ggml : fix soft max out-of-bounds access

ggml-ci

* ggml : reuse ggml_get_n_tasks() in ggml_graph_plan()

ggml-ci

grammar-parser : fix typo (ggerganov#4318)

preceeding -> preceding

swift : fix prompt tokenization logic (ggerganov#4321)

swift : fix concatenation method to avoid invalid UTF8 stringfication (ggerganov#4325)

simple : update error message for KV cache check (ggerganov#4324)

This commit updates the error message that is printed when the
KV cache is not big enough to hold all the prompt and generated
tokens. Specifically it removes the reference to n_parallel and
replaces it with n_len.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

swift : revert compiler checks for swift package (ggerganov#4332)

sampling : custom samplers order (ggerganov#4285)

* Samplers sequence order w parameter

* Cleaned commented code

* Fixed formatting

* Rewrote with unordered_map

* Revert and rewrite, too many problems and safeguards would be needed

* Fixed code style

* Code style fixes according to review

* More readable samplers input string, fixed help

* Style fix in sampler_queue

* Formatting fixes

* Fixing whitespaces

llama : allow overriding GGUF metadata when loading model (ggerganov#4092)

* feat: Allow overriding GGUF metadata when loading model

* Fix the one time GCC is stricter than clang about something

* Step1

* Refactor... basically everything!

* Nuke obsolete GetArrayLen struct

* simplify std::string specialization

* Various cleanups

Add informational output when overrides are applied

Warn user when an override with the wrong type is specified

* Fix broken logic for parsing bool KV overrides
Fix issue where overrides didn't apply when key missing in GGUF metadata
Resolve merge changes

* llama : rearrange model params

* Update new GET_KEY call

Add note that metadata KV overrides aren't reflected in initial metadata KV info dump

---------

Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

grammar : pre-computed pieces + reserve mem + less string copies (ggerganov#4330)

* reserve space for codepoints

* improvement for the appended 0

* used precomputed token text for grammar sample

* reserve canidates_decoded

* reserve canidates_grammar

* remove candidates_decoded

* Revert "remove candidates_decoded"

This reverts commit 3773328.

* changed decode_utf8 to take src by ref

speculative : support `--color` (ggerganov#4343)

* speculative: add some colors

* minor : add braces

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

common : fix compile warning

server : recognize cache_prompt parameter in OAI API (ggerganov#4347)

train : fix ggerganov#4227 (double free in examples/train-text-from-scratch/train-text-from-scratch.cpp) (ggerganov#4351)

On commit b1108 (44c117f) xaedes added

    ggml_allocr * alloc = NULL;

    ... (many lines in between)

    if (alloc) {
        ggml_allocr_free(alloc);
    }

Which is correct, but it's easy to lose context after many lines in between.

On commit b1287 (0e76a899) xaedes made a big change. From here on, alloc is freed eagerly.

    alloc = ggml_allocr_new(...)
    ... (short lines of code)
    ggml_allocr_free(alloc)

This happens a few times, but alloc is never set to NULL, and many lines below,
we still have

    if (alloc) {
        ggml_allocr_free(alloc);
    }

which causes a double-free.

llama : per-layer KV cache + quantum K cache (ggerganov#4309)

* per-layer KV

* remove unnecessary copies

* less code duplication, offload k and v separately

* llama : offload KV cache per-layer

* llama : offload K shift tensors

* llama : offload for rest of the model arches

* llama : enable offload debug temporarily

* llama : keep the KV related layers on the device

* llama : remove mirrors, perform Device -> Host when partial offload

* common : add command-line arg to disable KV cache offloading

* llama : update session save/load

* llama : support quantum K cache (ggerganov#4312)

* llama : support quantum K cache (wip)

* metal : add F32 -> Q8_0 copy kernel

* cuda : add F32 -> Q8_0 copy kernel

ggml-ci

* cuda : use mmv kernel for quantum cache ops

* llama : pass KV cache type through API

* llama : fix build

ggml-ci

* metal : add F32 -> Q4_0 copy kernel

* metal : add F32 -> Q4_1 copy kernel

* cuda : wip

* cuda : add F32 -> Q4_0 and F32 -> Q4_1 copy kernels

* llama-bench : support type_k/type_v

* metal : use mm kernel only for quantum KV cache

* cuda : add comment

* llama : remove memory_f16 and kv_f16 flags

---------

Co-authored-by: slaren <slarengh@gmail.com>

* readme : add API change notice

---------

Co-authored-by: slaren <slarengh@gmail.com>

sync : ggml (new ops, tests, backend, etc.) (ggerganov#4359)

* sync : ggml (part 1)

* sync : ggml (part 2, CUDA)

* sync : ggml (part 3, Metal)

* ggml : build fixes

ggml-ci

* cuda : restore lost changes

* cuda : restore lost changes (StableLM rope)

* cmake : enable separable compilation for CUDA

ggml-ci

* ggml-cuda : remove device side dequantize

* Revert "cmake : enable separable compilation for CUDA"

This reverts commit 09e35d0.

* cuda : remove assert for rope

* tests : add test-backend-ops

* ggml : fix bug in ggml_concat

* ggml : restore `ggml_get_n_tasks()` logic in `ggml_graph_plan()`

* ci : try to fix macOS

* ggml-backend : remove backend self-registration

* ci : disable Metal for macOS cmake build

ggml-ci

* metal : fix "supports family" call

* metal : fix assert

* metal : print resource path

ggml-ci

---------

Co-authored-by: slaren <slarengh@gmail.com>

grammar : revert the replacement of llama_token_to_piece with id_to_token (ggerganov#4396)

Update README.md (ggerganov#4388)

Fix small typo.

ggml : increased GGML_MAX_PARAMS to allow finetuning of 70b models (ggerganov#4424)

server : fix local model name in server (ggerganov#4420)

llama : document logits_all deprecation (ggerganov#4418)

llama_context_params.logits_all is a parameter for controlling
llama_eval. This documents that logits_all should not be used with
llama_decode and llama_batch.

build : target Windows 8 for standard mingw-w64 (ggerganov#4405)

* build : target Windows 8 for standard mingw-w64

* make : fix missing console.o deps

This was causing a link error with `make all` on Windows.

english : use `typos` to fix comments and logs (ggerganov#4354)

server : tweak default sampling parameters (ggerganov#4367)

* Set a more typical Top P setting as the default

* Update temp max

llama : add Mixtral support (ggerganov#4406)

* convert : support Mixtral as LLAMA arch

* convert : fix n_ff typo

* llama : model loading

* ggml : sync latest ggml_mul_mat_id

* llama : update graph to support MoE

* llama : fix cur -> cur_expert

* llama : first working version

* llama : fix expert weighting in the FFN

* ggml : ggml_get_rows support 2D indexing [n_tokens, n_experts] (cpu only)

* ggml : add n_as argument to ggml_mul_mat_id

* ggml : fix ggml_get_rows to take into account ne02 / ne11

* metal : add more general support for ggml_get_rows + tests

* llama : add basic support for offloading moe with CUDA

* metal : add/mul/div use general kernel when src1 not cont

* metal : reduce the kernel launches for ggml_mul_mat_id

* ggml : get_rows : support non-contiguos tensors with gaps, generalize up to 3D

* ggml : update get_rows f16 and q

* cuda : support non-contiguous src1 in get_rows

* llama : offload missing ffn_moe_silu

* metal : fix ggml_get_rows to work with non-cont src1

* metal : add indirect mat-vec kernels for all quantization types

* llama : do not quantize expert gating tensors

* llama : add n_expert and n_expert_used to hparams + change quants

* test-backend-ops : add moe test

* cuda : fix get_rows when ncols is odd

* convert : determine n_ctx correctly

* metal : fix ggml_mul_mat_id for F32

* test-backend-ops : make experts more evenly probable (test_moe)

* test-backend-ops : cleanup, add moe test for batches

* test-backend-ops : add cpy from f32 -> all types test

* test-backend-ops : fix dequantize block offset

* llama : fix hard-coded number of experts

* test-backend-ops : simplify and disable slow tests to avoid CI timeout

* test-backend-ops : disable MOE test with thread sanitizer

* cuda : fix mul_mat_id with multi gpu

* convert : use 1e6 rope_freq_base for mixtral

* convert : fix style

* convert : support safetensors format

* gguf-py : bump version

* metal : add cpy f16 -> f32 kernel

* metal : fix binary ops for ne10 % 4 != 0

* test-backend-ops : add one more sum_rows test

* ggml : do not use BLAS with ggml_mul_mat_id

* convert-hf : support for mixtral-instruct (ggerganov#4428)

* convert : typo fix, add additional hyperparameters, use LLaMA arch for Mixtral-instruct

* convert : use sentencepiece tokenizer for Mixtral-instruct

* convert : make flake8 happy

* metal : fix soft_max kernels

ref: ggerganov/ggml@1914017

* metal : limit kernels to not use more than the allowed threads

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Radek Pilar <github@mrkva.eu>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
enhancement New feature or request
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants