Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

IQ4_NL: 4-bit non-linear quants with blocks of 32 #5590

Merged
merged 6 commits into from
Feb 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions examples/quantize/quantize.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
{ "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5551 ppl @ LLaMA-v1-7B", },
{ "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.07G, +0.2496 ppl @ LLaMA-v1-7B", },
{ "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 3.35G, +0.1764 ppl @ LLaMA-v1-7B", },
{ "IQ4_NL", LLAMA_FTYPE_MOSTLY_IQ4_NL, " 4.25 bpw non-linear quantization", },
{ "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", },
{ "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 3.59G, +0.0992 ppl @ LLaMA-v1-7B", },
{ "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 3.80G, +0.0532 ppl @ LLaMA-v1-7B", },
Expand Down
98 changes: 97 additions & 1 deletion ggml-cuda.cu
Original file line number Diff line number Diff line change
Expand Up @@ -526,6 +526,15 @@ typedef struct {
} block_iq1_s;
static_assert(sizeof(block_iq1_s) == sizeof(ggml_fp16_t) + QK_K/8 + QK_K/16, "wrong iq1_s block size/padding");

#define QK4_NL 32
#define QR4_NL 2
#define QI4_NL (QK4_NL / (4*QR4_NL))
typedef struct {
half d;
uint8_t qs[QK4_NL/2];
} block_iq4_nl;
static_assert(sizeof(block_iq4_nl) == sizeof(ggml_fp16_t) + QK4_NL/2, "wrong iq4_nl block size/padding");

#define WARP_SIZE 32
#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses

Expand Down Expand Up @@ -1985,6 +1994,26 @@ static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_

}

static const __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};

template<typename dst_t>
static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst_t * __restrict__ yy) {

const int i = blockIdx.x;
const block_iq4_nl * x = (const block_iq4_nl *) vx + i*(QK_K/QK4_NL);

const int tid = threadIdx.x;
const int il = tid/8; // 0...3
const int ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 4*il;
const uint8_t * q4 = x[ib].qs + 4*il;
const float d = (float)x[ib].d;
for (int j = 0; j < 4; ++j) {
y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
}

}

static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {

Expand Down Expand Up @@ -4728,6 +4757,56 @@ static __device__ __forceinline__ float vec_dot_iq1_s_q8_1(
#endif
}

#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
static __device__ __forceinline__ void get_int_from_table_16(const uint32_t & q4, const uint8_t * values,
int & val1, int & val2) {

uint32_t aux32; const uint8_t * q8 = (const uint8_t *)&aux32;
aux32 = q4 & 0x0f0f0f0f;
uint16_t v1 = values[q8[0]] | (values[q8[1]] << 8);
uint16_t v2 = values[q8[2]] | (values[q8[3]] << 8);
val1 = v1 | (v2 << 16);
aux32 = (q4 >> 4) & 0x0f0f0f0f;
v1 = values[q8[0]] | (values[q8[1]] << 8);
v2 = values[q8[2]] | (values[q8[3]] << 8);
val2 = v1 | (v2 << 16);
}
#endif

static __device__ __forceinline__ float vec_dot_iq4_nl_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {

const block_iq4_nl * bq = (const block_iq4_nl *) vbq;

#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
const uint16_t * q4 = (const uint16_t *)bq->qs + 2*iqs;
const int32_t * q8 = (const int32_t *)bq8_1->qs + iqs;

const uint8_t * values = (const uint8_t *)kvalues_iq4nl;

int v1, v2;
int sumi1 = 0, sumi2 = 0;
for (int l = 0; l < VDR_Q4_0_Q8_1_MMVQ; ++l) {
const uint32_t aux = q4[2*l] | (q4[2*l+1] << 16);
get_int_from_table_16(aux, values, v1, v2);
sumi1 = __dp4a(v1, q8[l+0], sumi1);
sumi2 = __dp4a(v2, q8[l+4], sumi2);
}

#else
const uint8_t * q4 = bq->qs + 4*iqs;
const int8_t * q8 = bq8_1->qs + 4*iqs;

int sumi1 = 0, sumi2 = 0;
for (int l = 0; l < 4*VDR_Q4_0_Q8_1_MMVQ; ++l) {
sumi1 += q8[l+ 0] * kvalues_iq4nl[q4[l] & 0xf];
sumi2 += q8[l+16] * kvalues_iq4nl[q4[l] >> 4];
}
#endif
const float d = (float)bq->d * __low2float(bq8_1->ds);
return d * (sumi1 + sumi2);
}

template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x, int mmq_y, int nwarps,
allocate_tiles_cuda_t allocate_tiles, load_tiles_cuda_t load_tiles, int vdr, vec_dot_q_mul_mat_cuda_t vec_dot>
static __device__ __forceinline__ void mul_mat_q(
Expand Down Expand Up @@ -6773,6 +6852,12 @@ static void dequantize_row_iq1_s_cuda(const void * vx, dst_t * y, const int k, c
dequantize_block_iq1_s<<<nb, 32, 0, stream>>>(vx, y);
}

template<typename dst_t>
static void dequantize_row_iq4_nl_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
const int nb = (k + QK_K - 1) / QK_K;
dequantize_block_iq4_nl<<<nb, 32, 0, stream>>>(vx, y);
}

template <typename src_t, typename dst_t>
static void convert_unary_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
Expand Down Expand Up @@ -6814,6 +6899,8 @@ static to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
return dequantize_row_iq3_xxs_cuda;
case GGML_TYPE_IQ1_S:
return dequantize_row_iq1_s_cuda;
case GGML_TYPE_IQ4_NL:
return dequantize_row_iq4_nl_cuda;
case GGML_TYPE_F32:
return convert_unary_cuda<float>;
default:
Expand Down Expand Up @@ -6851,6 +6938,8 @@ static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
return dequantize_row_iq3_xxs_cuda;
case GGML_TYPE_IQ1_S:
return dequantize_row_iq1_s_cuda;
case GGML_TYPE_IQ4_NL:
return dequantize_row_iq4_nl_cuda;
case GGML_TYPE_F16:
return convert_unary_cuda<half>;
default:
Expand Down Expand Up @@ -8595,6 +8684,7 @@ static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_CUD
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ4_NL:
return max_compute_capability >= CC_RDNA2 ? 128 : 64;
default:
GGML_ASSERT(false);
Expand All @@ -8619,6 +8709,7 @@ static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_CUD
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ4_NL:
return max_compute_capability >= CC_VOLTA ? 128 : 64;
case GGML_TYPE_Q6_K:
return 64;
Expand Down Expand Up @@ -8720,6 +8811,10 @@ static void ggml_cuda_op_mul_mat_vec_q(
mul_mat_vec_q_cuda<QK_K, QI1_S, block_iq1_s, 1, vec_dot_iq1_s_q8_1>
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_IQ4_NL:
mul_mat_vec_q_cuda<QK4_NL, QI4_NL, block_iq4_nl, VDR_Q4_0_Q8_1_MMVQ, vec_dot_iq4_nl_q8_1>
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
default:
GGML_ASSERT(false);
break;
Expand Down Expand Up @@ -11436,7 +11531,8 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
return false;
}
ggml_type a_type = a->type;
if (a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS || a_type == GGML_TYPE_IQ3_XXS || a_type == GGML_TYPE_IQ1_S) {
if (a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS || a_type == GGML_TYPE_IQ3_XXS ||
a_type == GGML_TYPE_IQ1_S || a_type == GGML_TYPE_IQ4_NL) {
if (b->ne[1] == 1 && ggml_nrows(b) > 1) {
return false;
}
Expand Down
Loading
Loading