Description
Name and Version
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 8 CUDA devices:
Device 0: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
Device 1: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
Device 2: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
Device 3: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
Device 4: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
Device 5: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
Device 6: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
Device 7: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
version: 4354 (0e70ba6)
built with cc (GCC) 9.3.1 20200408 (Red Hat 9.3.1-2) for x86_64-redhat-linux
Operating systems
Linux
GGML backends
CUDA
Hardware
NVIDIA A100-SXM4-80GB
Models
Meta-Llama-3-8B-Instruct
Problem description & steps to reproduce
Found that the output token sequence cannot match exactly between llama-tokenize
and AutoTokenizer
for models like Meta-Llama-3-8B-Instruct
, internlm2_5-7b-chat
.
reproduce
- convert model to gguf
python3 convert_hf_to_gguf.py \
$model_path \
--outfile $gguf_path
- run
llama-tokenize
prompt="<|im_start|>user\nhello who are you?<|im_end|>\n<|im_start|>assistant\n"
./build/bin/llama-tokenize -m \
./Meta-Llama-3-8B-Instruct.gguf \
-p "$prompt" \
--ids
- run with AutoTokenizer from transformers
from transformers import AutoTokenizer
model_path = './Meta-Llama-3-8B-Instruct'
# model_path = './internlm2_5-7b-chat'
tk = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
prompts = "<|im_start|>user\nhello who are you?<|im_end|>\n<|im_start|>assistant\n"
print(tk.encode(prompts))
results
Meta-Llama-3-8B-Instruct
llama-tokenize
[27, 91, 318, 5011, 91, 29, 882, 1734, 15339, 889, 527, 499, 76514, 91, 318, 6345, 91, 8616, 77, 27, 91, 318, 5011, 91, 29, 78191, 1734]
AutoTokenizer
[27, 91, 318, 5011, 91, 29, 882, 198, 15339, 889, 527, 499, 76514, 91, 318, 6345, 91, 397, 27, 91, 318, 5011, 91, 29, 78191, 198]
internlm2_5-7b-chat
llama-tokenize
[1, 92543, 1008, 1849, 15115, 1015, 657, 629, 345, 92542, 1849, 92543, 525, 11353, 1849]
AutoTokenizer
[1, 92543, 1008, 364, 15115, 1015, 657, 629, 345, 92542, 364, 92543, 525, 11353, 364]
First Bad Commit
No response
Relevant log output
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 8 CUDA devices:
Device 0: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
Device 1: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
Device 2: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
Device 3: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
Device 4: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
Device 5: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
Device 6: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
Device 7: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
llama_load_model_from_file: using device CUDA0 (NVIDIA A100-SXM4-80GB) - 10133 MiB free
llama_load_model_from_file: using device CUDA1 (NVIDIA A100-SXM4-80GB) - 80614 MiB free
llama_load_model_from_file: using device CUDA2 (NVIDIA A100-SXM4-80GB) - 11791 MiB free
llama_load_model_from_file: using device CUDA3 (NVIDIA A100-SXM4-80GB) - 80614 MiB free
llama_load_model_from_file: using device CUDA4 (NVIDIA A100-SXM4-80GB) - 80614 MiB free
llama_load_model_from_file: using device CUDA5 (NVIDIA A100-SXM4-80GB) - 80614 MiB free
llama_load_model_from_file: using device CUDA6 (NVIDIA A100-SXM4-80GB) - 80614 MiB free
llama_load_model_from_file: using device CUDA7 (NVIDIA A100-SXM4-80GB) - 80614 MiB free
llama_model_loader: loaded meta data with 31 key-value pairs and 291 tensors from Meta-Llama-3-8B-Instruct.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Meta Llama 3 8B Instruct
llama_model_loader: - kv 3: general.finetune str = Instruct
llama_model_loader: - kv 4: general.basename str = Meta-Llama-3
llama_model_loader: - kv 5: general.size_label str = 8B
llama_model_loader: - kv 6: general.license str = other
llama_model_loader: - kv 7: general.license.name str = llama3
llama_model_loader: - kv 8: general.license.link str = LICENSE
llama_model_loader: - kv 9: general.tags arr[str,6] = ["facebook", "meta", "pytorch", "llam...
llama_model_loader: - kv 10: general.languages arr[str,1] = ["en"]
llama_model_loader: - kv 11: llama.block_count u32 = 32
llama_model_loader: - kv 12: llama.context_length u32 = 8192
llama_model_loader: - kv 13: llama.embedding_length u32 = 4096
llama_model_loader: - kv 14: llama.feed_forward_length u32 = 14336
llama_model_loader: - kv 15: llama.attention.head_count u32 = 32
llama_model_loader: - kv 16: llama.attention.head_count_kv u32 = 8
llama_model_loader: - kv 17: llama.rope.freq_base f32 = 500000.000000
llama_model_loader: - kv 18: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 19: general.file_type u32 = 1
llama_model_loader: - kv 20: llama.vocab_size u32 = 128256
llama_model_loader: - kv 21: llama.rope.dimension_count u32 = 128
llama_model_loader: - kv 22: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 23: tokenizer.ggml.pre str = smaug-bpe
llama_model_loader: - kv 24: tokenizer.ggml.tokens arr[str,128256] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 25: tokenizer.ggml.token_type arr[i32,128256] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 26: tokenizer.ggml.merges arr[str,280147] = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
llama_model_loader: - kv 27: tokenizer.ggml.bos_token_id u32 = 128000
llama_model_loader: - kv 28: tokenizer.ggml.eos_token_id u32 = 128001
llama_model_loader: - kv 29: tokenizer.chat_template str = {% set loop_messages = messages %}{% ...
llama_model_loader: - kv 30: general.quantization_version u32 = 2
llama_model_loader: - type f32: 65 tensors
llama_model_loader: - type f16: 226 tensors
llm_load_vocab: control token: 128255 '<|reserved_special_token_250|>' is not marked as EOG
....
llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
llm_load_vocab: special tokens cache size = 256
llm_load_vocab: token to piece cache size = 0.8000 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 128256
llm_load_print_meta: n_merges = 280147
llm_load_print_meta: vocab_only = 1
llm_load_print_meta: model type = ?B
llm_load_print_meta: model ftype = all F32
llm_load_print_meta: model params = 8.03 B
llm_load_print_meta: model size = 14.96 GiB (16.00 BPW)
llm_load_print_meta: general.name = Meta Llama 3 8B Instruct
llm_load_print_meta: BOS token = 128000 '<|begin_of_text|>'
llm_load_print_meta: EOS token = 128001 '<|end_of_text|>'
llm_load_print_meta: EOT token = 128009 '<|eot_id|>'
llm_load_print_meta: LF token = 128 'Ä'
llm_load_print_meta: EOG token = 128001 '<|end_of_text|>'
llm_load_print_meta: EOG token = 128009 '<|eot_id|>'
llm_load_print_meta: max token length = 256
llama_model_load: vocab only - skipping tensors
llama_new_context_with_model: n_seq_max = 1
llama_new_context_with_model: n_ctx = 512
llama_new_context_with_model: n_ctx_per_seq = 512
llama_new_context_with_model: n_batch = 512
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base = 0.0
llama_new_context_with_model: freq_scale = 1
llama_new_context_with_model: n_ctx_pre_seq (512) > n_ctx_train (0) -- possible training context overflow
[27, 91, 318, 5011, 91, 29, 882, 1734, 15339, 889, 527, 499, 76514, 91, 318, 6345, 91, 8616, 77, 27, 91, 318, 5011, 91, 29, 78191, 1734]