-
Notifications
You must be signed in to change notification settings - Fork 13.4k
Open
Labels
Description
Name and Version
~/work/llama.cpp/build/bin/llama-server --version
version: 6291 (44b1efa41)
built with cc (GCC) 15.2.1 20250813 for x86_64-pc-linux-gnu
Operating systems
Linux
GGML backends
CPU
Hardware
i5-8250U
Models
Kimi-VL-A3B-Thinking
Problem description & steps to reproduce
python convert_hf_to_gguf.py --outfile Kimi-VL-A3B-Thinking-2506-Q8.gguf --outtype q8_0 modeldir
python convert_hf_to_gguf.py --outfile mmproj-model-f16.gguf --outtype f16 modeldir --mmproj
To generate the ggufs. Then I run it with
--temp 0.8
--top-p 1
--ctx-size 102400
--jinja
--no-mmap
Uploaded a korean text. Prompt
Transcribe and then translate the text
Gradio example with same temp and top-p thinks in chinese and transcribes it more or less correct.
llama-server thinks in english and fucks the transcription up completely
First Bad Commit
No response
Relevant log output
./build/bin/llama-server
--model ~/models/Kimi-VL/Kimi-VL-A3B-Thinking-2506-Q4_K_M.gguf
--temp 0.8
--top-p 1
--ctx-size 102400
--mmproj ~/models/Kimi-VL/mmproj-Kimi-VL-A3B-Thinking-2506-f16.gguf
--jinja
--no-mmap
main: binding port with default address family
main: HTTP server is listening, hostname: 127.0.0.1, port: 10003, http threads: 7
main: loading model
srv load_model: loading model '/home/anon/models/Kimi-VL2/Kimi-VL-A3B-Thinking-2506-Q8.gguf'
llama_model_loader: loaded meta data with 44 key-value pairs and 430 tensors from /home/anon/models/Kimi-VL2/Kimi-VL-A3B-Thinking-2506-Q8.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = deepseek2
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Modeldir
llama_model_loader: - kv 3: general.size_label str = 64x1.8B
llama_model_loader: - kv 4: general.license str = mit
llama_model_loader: - kv 5: general.base_model.count u32 = 1
llama_model_loader: - kv 6: general.base_model.0.name str = Kimi VL A3B Instruct
llama_model_loader: - kv 7: general.base_model.0.organization str = Moonshotai
llama_model_loader: - kv 8: general.base_model.0.repo_url str = https://huggingface.co/moonshotai/Kim...
llama_model_loader: - kv 9: general.tags arr[str,1] = ["image-text-to-text"]
llama_model_loader: - kv 10: deepseek2.block_count u32 = 27
llama_model_loader: - kv 11: deepseek2.context_length u32 = 131072
llama_model_loader: - kv 12: deepseek2.embedding_length u32 = 2048
llama_model_loader: - kv 13: deepseek2.feed_forward_length u32 = 11264
llama_model_loader: - kv 14: deepseek2.attention.head_count u32 = 16
llama_model_loader: - kv 15: deepseek2.attention.head_count_kv u32 = 1
llama_model_loader: - kv 16: deepseek2.rope.freq_base f32 = 800000.000000
llama_model_loader: - kv 17: deepseek2.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 18: deepseek2.expert_used_count u32 = 6
llama_model_loader: - kv 19: general.file_type u32 = 7
llama_model_loader: - kv 20: deepseek2.leading_dense_block_count u32 = 1
llama_model_loader: - kv 21: deepseek2.vocab_size u32 = 163840
llama_model_loader: - kv 22: deepseek2.attention.kv_lora_rank u32 = 512
llama_model_loader: - kv 23: deepseek2.attention.key_length u32 = 576
llama_model_loader: - kv 24: deepseek2.attention.value_length u32 = 512
llama_model_loader: - kv 25: deepseek2.attention.key_length_mla u32 = 192
llama_model_loader: - kv 26: deepseek2.attention.value_length_mla u32 = 128
llama_model_loader: - kv 27: deepseek2.expert_feed_forward_length u32 = 1408
llama_model_loader: - kv 28: deepseek2.expert_count u32 = 64
llama_model_loader: - kv 29: deepseek2.expert_shared_count u32 = 2
llama_model_loader: - kv 30: deepseek2.expert_weights_scale f32 = 2.446000
llama_model_loader: - kv 31: deepseek2.expert_weights_norm bool = true
llama_model_loader: - kv 32: deepseek2.expert_gating_func u32 = 2
llama_model_loader: - kv 33: deepseek2.rope.dimension_count u32 = 64
llama_model_loader: - kv 34: general.quantization_version u32 = 2
llama_model_loader: - kv 35: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 36: tokenizer.ggml.pre str = kimi-k2
srv log_server_r: request: GET /health 127.0.0.1 503
llama_model_loader: - kv 37: tokenizer.ggml.tokens arr[str,163840] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 38: tokenizer.ggml.token_type arr[i32,163840] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 39: tokenizer.ggml.merges arr[str,163328] = ["Ġ Ġ", "ĠĠ ĠĠ", "Ġ t", "i n",...
llama_model_loader: - kv 40: tokenizer.ggml.bos_token_id u32 = 163584
llama_model_loader: - kv 41: tokenizer.ggml.eos_token_id u32 = 163585
llama_model_loader: - kv 42: tokenizer.ggml.padding_token_id u32 = 163839
llama_model_loader: - kv 43: tokenizer.chat_template str = {%- for message in messages -%}{%- if...
llama_model_loader: - type f32: 134 tensors
llama_model_loader: - type q8_0: 296 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q8_0
print_info: file size = 15.80 GiB (8.51 BPW)
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: printing all EOG tokens:
load: - 163585 ('[EOS]')
load: - 163586 ('<|im_end|>')
load: special tokens cache size = 256
load: token to piece cache size = 1.0607 MB
print_info: arch = deepseek2
print_info: vocab_only = 0
print_info: n_ctx_train = 131072
print_info: n_embd = 2048
print_info: n_layer = 27
print_info: n_head = 16
print_info: n_head_kv = 1
print_info: n_rot = 64
print_info: n_swa = 0
print_info: is_swa_any = 0
print_info: n_embd_head_k = 576
print_info: n_embd_head_v = 512
print_info: n_gqa = 16
print_info: n_embd_k_gqa = 576
print_info: n_embd_v_gqa = 512
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-05
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 11264
print_info: n_expert = 64
print_info: n_expert_used = 6
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 0
print_info: rope scaling = linear
print_info: freq_base_train = 800000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 131072
print_info: rope_finetuned = unknown
print_info: model type = 16B
print_info: model params = 15.96 B
print_info: general.name = Modeldir
print_info: n_layer_dense_lead = 1
print_info: n_lora_q = 0
print_info: n_lora_kv = 512
print_info: n_embd_head_k_mla = 192
print_info: n_embd_head_v_mla = 128
print_info: n_ff_exp = 1408
print_info: n_expert_shared = 2
print_info: expert_weights_scale = 2.4
print_info: expert_weights_norm = 1
print_info: expert_gating_func = sigmoid
print_info: rope_yarn_log_mul = 0.0000
print_info: vocab type = BPE
print_info: n_vocab = 163840
print_info: n_merges = 163328
print_info: BOS token = 163584 '[BOS]'
print_info: EOS token = 163585 '[EOS]'
print_info: EOT token = 163586 '<|im_end|>'
print_info: PAD token = 163839 '[UNK]'
print_info: LF token = 198 'Ċ'
print_info: EOG token = 163585 '[EOS]'
print_info: EOG token = 163586 '<|im_end|>'
print_info: max token length = 512
load_tensors: loading model tensors, this can take a while... (mmap = false)
load_tensors: CPU model buffer size = 16181.95 MiB
...........................srv log_server_r: request: GET /health 127.0.0.1 503
........................................srv log_server_r: request: GET /health 127.0.0.1 503
......................
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 102400
llama_context: n_ctx_per_seq = 102400
llama_context: n_batch = 2048
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = 0
llama_context: kv_unified = false
llama_context: freq_base = 800000.0
llama_context: freq_scale = 1
llama_context: n_ctx_per_seq (102400) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_context: CPU output buffer size = 0.62 MiB
llama_kv_cache: CPU KV buffer size = 5737.50 MiB
srv log_server_r: request: GET /health 127.0.0.1 503
llama_kv_cache: size = 5737.50 MiB (102400 cells, 27 layers, 1/1 seqs), K (f16): 3037.50 MiB, V (f16): 2700.00 MiB
llama_context: CPU compute buffer size = 3456.38 MiB
llama_context: graph nodes = 1974
llama_context: graph splits = 378 (with bs=512), 1 (with bs=1)
common_init_from_params: added [EOS] logit bias = -inf
common_init_from_params: added <|im_end|> logit bias = -inf
common_init_from_params: setting dry_penalty_last_n to ctx_size = 102400
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
clip_model_loader: model name: Modeldir
clip_model_loader: description:
clip_model_loader: GGUF version: 3
clip_model_loader: alignment: 32
clip_model_loader: n_tensors: 443
clip_model_loader: n_kv: 26
clip_model_loader: has vision encoder
clip_ctx: CLIP using CPU backend
load_hparams: projector: kimivl
load_hparams: n_embd: 1152
load_hparams: n_head: 16
load_hparams: n_ff: 4304
load_hparams: n_layer: 27
load_hparams: ffn_op: gelu
load_hparams: projection_dim: 2048
--- vision hparams ---
load_hparams: image_size: 896
load_hparams: patch_size: 14
load_hparams: has_llava_proj: 0
load_hparams: minicpmv_version: 0
load_hparams: proj_scale_factor: 2
load_hparams: n_wa_pattern: 0
load_hparams: model size: 863.41 MiB
load_hparams: metadata size: 0.16 MiB
alloc_compute_meta: CPU compute buffer size = 2.04 MiB
srv load_model: loaded multimodal model, '/home/anon/models/Kimi-VL2/mmproj-model-f16.gguf'
srv init: initializing slots, n_slots = 1
slot init: id 0 | task -1 | new slot n_ctx_slot = 102400
main: model loaded
main: chat template, chat_template: {%- for message in messages -%}{%- if loop.first and messages[0]['role'] != 'system' -%}{{'<|im_system|>system<|im_middle|>You are a helpful assistant<|im_end|>'}}{%- endif -%}{%- if message['role'] == 'system' -%}{{'<|im_system|>'}}{%- endif -%}{%- if message['role'] == 'user' -%}{{'<|im_user|>'}}{%- endif -%}{%- if message['role'] == 'assistant' -%}{{'<|im_assistant|>'}}{%- endif -%}{{- message['role'] -}}{{'<|im_middle|>'}}{%- if message['content'] is string -%}{{- message['content'] + '<|im_end|>' -}}{%- else -%}{%- for content in message['content'] -%}{%- if content['type'] == 'image' or 'image' in content or 'image_url' in content -%}{{'<|media_start|>image<|media_content|><|media_pad|><|media_end|>'}}{%- else -%}{{content['text']}}{%- endif -%}{%- endfor -%}{{'<|im_end|>'}}{%- endif -%}{%- endfor -%}{%- if add_generation_prompt -%}{{'<|im_assistant|>assistant<|im_middle|>'}}{%- endif -%}, example_format: '<|im_system|>system<|im_middle|>You are a helpful assistant<|im_end|><|im_user|>user<|im_middle|>Hello<|im_end|><|im_assistant|>assistant<|im_middle|>Hi there<|im_end|><|im_user|>user<|im_middle|>How are you?<|im_end|><|im_assistant|>assistant<|im_middle|>'
main: server is listening on http://127.0.0.1:10003 - starting the main loop
srv update_slots: all slots are idle
srv log_server_r: request: GET /health 127.0.0.1 200
srv params_from_: Chat format: Content-only
slot launch_slot_: id 0 | task 0 | processing task
slot update_slots: id 0 | task 0 | new prompt, n_ctx_slot = 102400, n_keep = 0, n_prompt_tokens = 194
slot update_slots: id 0 | task 0 | kv cache rm [0, end)
slot update_slots: id 0 | task 0 | prompt processing progress, n_past = 22, n_tokens = 22, progress = 0.113402
slot update_slots: id 0 | task 0 | kv cache rm [22, end)
srv process_chun: processing image...
srv process_chun: image processed in 13707 ms
slot update_slots: id 0 | task 0 | prompt processing progress, n_past = 194, n_tokens = 4, progress = 1.000000
slot update_slots: id 0 | task 0 | prompt done, n_past = 194, n_tokens = 4
slot release: id 0 | task 0 | stop processing: n_past = 2676, truncated = 0
slot print_timing: id 0 | task 0 |
prompt eval time = 14974.21 ms / 194 tokens ( 77.19 ms per token, 12.96 tokens per second)
eval time = 355905.54 ms / 2483 tokens ( 143.34 ms per token, 6.98 tokens per second)
total time = 370879.76 ms / 2677 tokens
srv update_slots: all slots are idle
srv log_server_r: request: POST /v1/chat/completions 127.0.0.1 200
srv params_from_: Chat format: Hermes 2 Pro
slot launch_slot_: id 0 | task 276 | processing task
slot update_slots: id 0 | task 276 | new prompt, n_ctx_slot = 40960, n_keep = 0, n_prompt_tokens = 43
slot update_slots: id 0 | task 276 | need to evaluate at least 1 token for each active slot, n_past = 43, n_prompt_tokens = 43
slot update_slots: id 0 | task 276 | kv cache rm [42, end)
slot update_slots: id 0 | task 276 | prompt processing progress, n_past = 43, n_tokens = 1, progress = 0.023256
slot update_slots: id 0 | task 276 | prompt done, n_past = 43, n_tokens = 1
slot release: id 0 | task 276 | stop processing: n_past = 221, truncated = 0
slot print_timing: id 0 | task 276 |
prompt eval time = 58.24 ms / 1 tokens ( 58.24 ms per token, 17.17 tokens per second)
eval time = 5377.56 ms / 179 tokens ( 30.04 ms per token, 33.29 tokens per second)
total time = 5435.79 ms / 180 tokens
srv update_slots: all slots are idle
srv log_server_r: request: POST /v1/chat/completions 127.0.0.1 200
srv log_server_r: request: GET / 127.0.0.1 200
srv log_server_r: request: GET /props 127.0.0.1 200
srv params_from_: Chat format: Content-only
slot launch_slot_: id 0 | task 2485 | processing task
slot update_slots: id 0 | task 2485 | new prompt, n_ctx_slot = 102400, n_keep = 0, n_prompt_tokens = 193
slot update_slots: id 0 | task 2485 | kv cache rm [12, end)
srv process_chun: processing image...
srv process_chun: image processed in 9788 ms
slot update_slots: id 0 | task 2485 | prompt processing progress, n_past = 193, n_tokens = 13, progress = 0.937824
slot update_slots: id 0 | task 2485 | prompt done, n_past = 193, n_tokens = 13
slot release: id 0 | task 2485 | stop processing: n_past = 1896, truncated = 0
slot print_timing: id 0 | task 2485 |
prompt eval time = 10343.06 ms / 181 tokens ( 57.14 ms per token, 17.50 tokens per second)
eval time = 220225.81 ms / 1704 tokens ( 129.24 ms per token, 7.74 tokens per second)
total time = 230568.87 ms / 1885 tokens
srv update_slots: all slots are idle
srv log_server_r: request: POST /v1/chat/completions 127.0.0.1 200