Skip to content

Eval bug: Kimi-VL-A3B-Thinking-2506 not working correctly #15600

@Som-anon

Description

@Som-anon

Name and Version

~/work/llama.cpp/build/bin/llama-server --version
version: 6291 (44b1efa41)
built with cc (GCC) 15.2.1 20250813 for x86_64-pc-linux-gnu

Operating systems

Linux

GGML backends

CPU

Hardware

i5-8250U

Models

Kimi-VL-A3B-Thinking

Problem description & steps to reproduce

python convert_hf_to_gguf.py --outfile Kimi-VL-A3B-Thinking-2506-Q8.gguf --outtype q8_0 modeldir
python convert_hf_to_gguf.py --outfile mmproj-model-f16.gguf --outtype f16 modeldir --mmproj

To generate the ggufs. Then I run it with

      --temp 0.8
      --top-p 1
      --ctx-size 102400
      --jinja
      --no-mmap

Uploaded a korean text. Prompt

Transcribe and then translate the text

Gradio example with same temp and top-p thinks in chinese and transcribes it more or less correct.

llama-server thinks in english and fucks the transcription up completely

First Bad Commit

No response

Relevant log output

./build/bin/llama-server
      --model ~/models/Kimi-VL/Kimi-VL-A3B-Thinking-2506-Q4_K_M.gguf
      --temp 0.8
      --top-p 1
      --ctx-size 102400
      --mmproj ~/models/Kimi-VL/mmproj-Kimi-VL-A3B-Thinking-2506-f16.gguf
      --jinja
      --no-mmap
main: binding port with default address family
main: HTTP server is listening, hostname: 127.0.0.1, port: 10003, http threads: 7
main: loading model
srv    load_model: loading model '/home/anon/models/Kimi-VL2/Kimi-VL-A3B-Thinking-2506-Q8.gguf'
llama_model_loader: loaded meta data with 44 key-value pairs and 430 tensors from /home/anon/models/Kimi-VL2/Kimi-VL-A3B-Thinking-2506-Q8.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = deepseek2
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Modeldir
llama_model_loader: - kv   3:                         general.size_label str              = 64x1.8B
llama_model_loader: - kv   4:                            general.license str              = mit
llama_model_loader: - kv   5:                   general.base_model.count u32              = 1
llama_model_loader: - kv   6:                  general.base_model.0.name str              = Kimi VL A3B Instruct
llama_model_loader: - kv   7:          general.base_model.0.organization str              = Moonshotai
llama_model_loader: - kv   8:              general.base_model.0.repo_url str              = https://huggingface.co/moonshotai/Kim...
llama_model_loader: - kv   9:                               general.tags arr[str,1]       = ["image-text-to-text"]
llama_model_loader: - kv  10:                      deepseek2.block_count u32              = 27
llama_model_loader: - kv  11:                   deepseek2.context_length u32              = 131072
llama_model_loader: - kv  12:                 deepseek2.embedding_length u32              = 2048
llama_model_loader: - kv  13:              deepseek2.feed_forward_length u32              = 11264
llama_model_loader: - kv  14:             deepseek2.attention.head_count u32              = 16
llama_model_loader: - kv  15:          deepseek2.attention.head_count_kv u32              = 1
llama_model_loader: - kv  16:                   deepseek2.rope.freq_base f32              = 800000.000000
llama_model_loader: - kv  17: deepseek2.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  18:                deepseek2.expert_used_count u32              = 6
llama_model_loader: - kv  19:                          general.file_type u32              = 7
llama_model_loader: - kv  20:        deepseek2.leading_dense_block_count u32              = 1
llama_model_loader: - kv  21:                       deepseek2.vocab_size u32              = 163840
llama_model_loader: - kv  22:           deepseek2.attention.kv_lora_rank u32              = 512
llama_model_loader: - kv  23:             deepseek2.attention.key_length u32              = 576
llama_model_loader: - kv  24:           deepseek2.attention.value_length u32              = 512
llama_model_loader: - kv  25:         deepseek2.attention.key_length_mla u32              = 192
llama_model_loader: - kv  26:       deepseek2.attention.value_length_mla u32              = 128
llama_model_loader: - kv  27:       deepseek2.expert_feed_forward_length u32              = 1408
llama_model_loader: - kv  28:                     deepseek2.expert_count u32              = 64
llama_model_loader: - kv  29:              deepseek2.expert_shared_count u32              = 2
llama_model_loader: - kv  30:             deepseek2.expert_weights_scale f32              = 2.446000
llama_model_loader: - kv  31:              deepseek2.expert_weights_norm bool             = true
llama_model_loader: - kv  32:               deepseek2.expert_gating_func u32              = 2
llama_model_loader: - kv  33:             deepseek2.rope.dimension_count u32              = 64
llama_model_loader: - kv  34:               general.quantization_version u32              = 2
llama_model_loader: - kv  35:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  36:                         tokenizer.ggml.pre str              = kimi-k2
srv  log_server_r: request: GET /health 127.0.0.1 503
llama_model_loader: - kv  37:                      tokenizer.ggml.tokens arr[str,163840]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  38:                  tokenizer.ggml.token_type arr[i32,163840]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  39:                      tokenizer.ggml.merges arr[str,163328]  = ["Ġ Ġ", "ĠĠ ĠĠ", "Ġ t", "i n",...
llama_model_loader: - kv  40:                tokenizer.ggml.bos_token_id u32              = 163584
llama_model_loader: - kv  41:                tokenizer.ggml.eos_token_id u32              = 163585
llama_model_loader: - kv  42:            tokenizer.ggml.padding_token_id u32              = 163839
llama_model_loader: - kv  43:                    tokenizer.chat_template str              = {%- for message in messages -%}{%- if...
llama_model_loader: - type  f32:  134 tensors
llama_model_loader: - type q8_0:  296 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = Q8_0
print_info: file size   = 15.80 GiB (8.51 BPW) 
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: printing all EOG tokens:
load:   - 163585 ('[EOS]')
load:   - 163586 ('<|im_end|>')
load: special tokens cache size = 256
load: token to piece cache size = 1.0607 MB
print_info: arch             = deepseek2
print_info: vocab_only       = 0
print_info: n_ctx_train      = 131072
print_info: n_embd           = 2048
print_info: n_layer          = 27
print_info: n_head           = 16
print_info: n_head_kv        = 1
print_info: n_rot            = 64
print_info: n_swa            = 0
print_info: is_swa_any       = 0
print_info: n_embd_head_k    = 576
print_info: n_embd_head_v    = 512
print_info: n_gqa            = 16
print_info: n_embd_k_gqa     = 576
print_info: n_embd_v_gqa     = 512
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-05
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 0.0e+00
print_info: n_ff             = 11264
print_info: n_expert         = 64
print_info: n_expert_used    = 6
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = 0
print_info: rope scaling     = linear
print_info: freq_base_train  = 800000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn  = 131072
print_info: rope_finetuned   = unknown
print_info: model type       = 16B
print_info: model params     = 15.96 B
print_info: general.name     = Modeldir
print_info: n_layer_dense_lead   = 1
print_info: n_lora_q             = 0
print_info: n_lora_kv            = 512
print_info: n_embd_head_k_mla    = 192
print_info: n_embd_head_v_mla    = 128
print_info: n_ff_exp             = 1408
print_info: n_expert_shared      = 2
print_info: expert_weights_scale = 2.4
print_info: expert_weights_norm  = 1
print_info: expert_gating_func   = sigmoid
print_info: rope_yarn_log_mul    = 0.0000
print_info: vocab type       = BPE
print_info: n_vocab          = 163840
print_info: n_merges         = 163328
print_info: BOS token        = 163584 '[BOS]'
print_info: EOS token        = 163585 '[EOS]'
print_info: EOT token        = 163586 '<|im_end|>'
print_info: PAD token        = 163839 '[UNK]'
print_info: LF token         = 198 'Ċ'
print_info: EOG token        = 163585 '[EOS]'
print_info: EOG token        = 163586 '<|im_end|>'
print_info: max token length = 512
load_tensors: loading model tensors, this can take a while... (mmap = false)
load_tensors:          CPU model buffer size = 16181.95 MiB
...........................srv  log_server_r: request: GET /health 127.0.0.1 503
........................................srv  log_server_r: request: GET /health 127.0.0.1 503
......................
llama_context: constructing llama_context
llama_context: n_seq_max     = 1
llama_context: n_ctx         = 102400
llama_context: n_ctx_per_seq = 102400
llama_context: n_batch       = 2048
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = 0
llama_context: kv_unified    = false
llama_context: freq_base     = 800000.0
llama_context: freq_scale    = 1
llama_context: n_ctx_per_seq (102400) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_context:        CPU  output buffer size =     0.62 MiB
llama_kv_cache:        CPU KV buffer size =  5737.50 MiB
srv  log_server_r: request: GET /health 127.0.0.1 503
llama_kv_cache: size = 5737.50 MiB (102400 cells,  27 layers,  1/1 seqs), K (f16): 3037.50 MiB, V (f16): 2700.00 MiB
llama_context:        CPU compute buffer size =  3456.38 MiB
llama_context: graph nodes  = 1974
llama_context: graph splits = 378 (with bs=512), 1 (with bs=1)
common_init_from_params: added [EOS] logit bias = -inf
common_init_from_params: added <|im_end|> logit bias = -inf
common_init_from_params: setting dry_penalty_last_n to ctx_size = 102400
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
clip_model_loader: model name:   Modeldir
clip_model_loader: description:  
clip_model_loader: GGUF version: 3
clip_model_loader: alignment:    32
clip_model_loader: n_tensors:    443
clip_model_loader: n_kv:         26

clip_model_loader: has vision encoder
clip_ctx: CLIP using CPU backend
load_hparams: projector:          kimivl
load_hparams: n_embd:             1152
load_hparams: n_head:             16
load_hparams: n_ff:               4304
load_hparams: n_layer:            27
load_hparams: ffn_op:             gelu
load_hparams: projection_dim:     2048

--- vision hparams ---
load_hparams: image_size:         896
load_hparams: patch_size:         14
load_hparams: has_llava_proj:     0
load_hparams: minicpmv_version:   0
load_hparams: proj_scale_factor:  2
load_hparams: n_wa_pattern:       0

load_hparams: model size:         863.41 MiB
load_hparams: metadata size:      0.16 MiB
alloc_compute_meta:        CPU compute buffer size =     2.04 MiB
srv    load_model: loaded multimodal model, '/home/anon/models/Kimi-VL2/mmproj-model-f16.gguf'
srv          init: initializing slots, n_slots = 1
slot         init: id  0 | task -1 | new slot n_ctx_slot = 102400
main: model loaded
main: chat template, chat_template: {%- for message in messages -%}{%- if loop.first and messages[0]['role'] != 'system' -%}{{'<|im_system|>system<|im_middle|>You are a helpful assistant<|im_end|>'}}{%- endif -%}{%- if message['role'] == 'system' -%}{{'<|im_system|>'}}{%- endif -%}{%- if message['role'] == 'user' -%}{{'<|im_user|>'}}{%- endif -%}{%- if message['role'] == 'assistant' -%}{{'<|im_assistant|>'}}{%- endif -%}{{- message['role'] -}}{{'<|im_middle|>'}}{%- if message['content'] is string -%}{{- message['content'] + '<|im_end|>' -}}{%- else -%}{%- for content in message['content'] -%}{%- if content['type'] == 'image' or 'image' in content or 'image_url' in content -%}{{'<|media_start|>image<|media_content|><|media_pad|><|media_end|>'}}{%- else -%}{{content['text']}}{%- endif -%}{%- endfor -%}{{'<|im_end|>'}}{%- endif -%}{%- endfor -%}{%- if add_generation_prompt -%}{{'<|im_assistant|>assistant<|im_middle|>'}}{%- endif -%}, example_format: '<|im_system|>system<|im_middle|>You are a helpful assistant<|im_end|><|im_user|>user<|im_middle|>Hello<|im_end|><|im_assistant|>assistant<|im_middle|>Hi there<|im_end|><|im_user|>user<|im_middle|>How are you?<|im_end|><|im_assistant|>assistant<|im_middle|>'
main: server is listening on http://127.0.0.1:10003 - starting the main loop
srv  update_slots: all slots are idle
srv  log_server_r: request: GET /health 127.0.0.1 200
srv  params_from_: Chat format: Content-only
slot launch_slot_: id  0 | task 0 | processing task
slot update_slots: id  0 | task 0 | new prompt, n_ctx_slot = 102400, n_keep = 0, n_prompt_tokens = 194
slot update_slots: id  0 | task 0 | kv cache rm [0, end)
slot update_slots: id  0 | task 0 | prompt processing progress, n_past = 22, n_tokens = 22, progress = 0.113402
slot update_slots: id  0 | task 0 | kv cache rm [22, end)
srv  process_chun: processing image...
srv  process_chun: image processed in 13707 ms
slot update_slots: id  0 | task 0 | prompt processing progress, n_past = 194, n_tokens = 4, progress = 1.000000
slot update_slots: id  0 | task 0 | prompt done, n_past = 194, n_tokens = 4
slot      release: id  0 | task 0 | stop processing: n_past = 2676, truncated = 0
slot print_timing: id  0 | task 0 | 
prompt eval time =   14974.21 ms /   194 tokens (   77.19 ms per token,    12.96 tokens per second)
       eval time =  355905.54 ms /  2483 tokens (  143.34 ms per token,     6.98 tokens per second)
      total time =  370879.76 ms /  2677 tokens
srv  update_slots: all slots are idle
srv  log_server_r: request: POST /v1/chat/completions 127.0.0.1 200
srv  params_from_: Chat format: Hermes 2 Pro
slot launch_slot_: id  0 | task 276 | processing task
slot update_slots: id  0 | task 276 | new prompt, n_ctx_slot = 40960, n_keep = 0, n_prompt_tokens = 43
slot update_slots: id  0 | task 276 | need to evaluate at least 1 token for each active slot, n_past = 43, n_prompt_tokens = 43
slot update_slots: id  0 | task 276 | kv cache rm [42, end)
slot update_slots: id  0 | task 276 | prompt processing progress, n_past = 43, n_tokens = 1, progress = 0.023256
slot update_slots: id  0 | task 276 | prompt done, n_past = 43, n_tokens = 1
slot      release: id  0 | task 276 | stop processing: n_past = 221, truncated = 0
slot print_timing: id  0 | task 276 | 
prompt eval time =      58.24 ms /     1 tokens (   58.24 ms per token,    17.17 tokens per second)
       eval time =    5377.56 ms /   179 tokens (   30.04 ms per token,    33.29 tokens per second)
      total time =    5435.79 ms /   180 tokens
srv  update_slots: all slots are idle
srv  log_server_r: request: POST /v1/chat/completions 127.0.0.1 200
srv  log_server_r: request: GET / 127.0.0.1 200
srv  log_server_r: request: GET /props 127.0.0.1 200
srv  params_from_: Chat format: Content-only
slot launch_slot_: id  0 | task 2485 | processing task
slot update_slots: id  0 | task 2485 | new prompt, n_ctx_slot = 102400, n_keep = 0, n_prompt_tokens = 193
slot update_slots: id  0 | task 2485 | kv cache rm [12, end)
srv  process_chun: processing image...
srv  process_chun: image processed in 9788 ms
slot update_slots: id  0 | task 2485 | prompt processing progress, n_past = 193, n_tokens = 13, progress = 0.937824
slot update_slots: id  0 | task 2485 | prompt done, n_past = 193, n_tokens = 13
slot      release: id  0 | task 2485 | stop processing: n_past = 1896, truncated = 0
slot print_timing: id  0 | task 2485 | 
prompt eval time =   10343.06 ms /   181 tokens (   57.14 ms per token,    17.50 tokens per second)
       eval time =  220225.81 ms /  1704 tokens (  129.24 ms per token,     7.74 tokens per second)
      total time =  230568.87 ms /  1885 tokens
srv  update_slots: all slots are idle
srv  log_server_r: request: POST /v1/chat/completions 127.0.0.1 200

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions