Skip to content

Eval bug: Nemotron-H-47B-Reasoning no kv cache, always reprocesses prompt #16033

@aoleg

Description

@aoleg

Name and Version

llama-cli --version
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce RTX 5090, compute capability 12.0, VMM: yes
load_backend: loaded CUDA backend from S:\llm\llama\ggml-cuda.dll
load_backend: loaded RPC backend from S:\llm\llama\ggml-rpc.dll
load_backend: loaded CPU backend from S:\llm\llama\ggml-cpu-alderlake.dll
version: 6641 (895329e)
built with clang version 19.1.5 for x86_64-pc-windows-msvc

Operating systems

Windows

GGML backends

CUDA

Hardware

Intel i9-12900K + 1x RTX 5090 32GB

Models

bartowski\nvidia_Nemotron-H-47B-Reasoning-128K-GGUF\nvidia_Nemotron-H-47B-Reasoning-128K-Q4_K_M.gguf
https://huggingface.co/bartowski/nvidia_Nemotron-H-47B-Reasoning-128K-GGUF

Problem description & steps to reproduce

when I run llama-server, it does not appear to respect the values for kv-cache; moreover, it reprocesses the prompt every time, which gets quite long in the end.

Particularly unrealistic values for kv cache (32768 context size):
llama_kv_cache: CUDA0 KV buffer size = 490.00 MiB
llama_kv_cache: size = 490.00 MiB ( 32768 cells, 5 layers, 1/1 seqs), K (f16): 320.00 MiB, V (q8_0): 170.00 MiB

And reprocessing every time:
slot update_slots: id 0 | task 275 | new prompt, n_ctx_slot = 32768, n_keep = 0, n_prompt_tokens = 1724
slot update_slots: id 0 | task 275 | n_past = 1682, cache_tokens.size() = 1716, seq_id = 0, pos_min = 1715, n_swa = 0
slot update_slots: id 0 | task 275 | forcing full prompt re-processing due to lack of cache data (likely due to SWA, see #13194 (comment))
slot update_slots: id 0 | task 275 | kv cache rm [0, end)

I tried with and without --swa-full, the result is still the same.

First Bad Commit

No response

Relevant log output

llama-server     --model "s:\lmstudio\models\bartowski\nvidia_Nemotron-H-47B-Reasoning-128K-GGUF\nvidia_Nemotron-H-47B-Reasoning-128K-Q4_K_M.gguf"     --alias "nvidia/Nemotron-H-47B-Reasoning-128K-Q4_K_M"     --ctx-size 32768     --swa-full     -ngl 999     -fa on     -ctk f16 -ctv q8_0     --host 127.0.0.1     --port 8081     --no-mmap     --jinja     --threads 12
ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
  Device 0: NVIDIA GeForce RTX 5090, compute capability 12.0, VMM: yes
load_backend: loaded CUDA backend from S:\llm\llama\ggml-cuda.dll
load_backend: loaded RPC backend from S:\llm\llama\ggml-rpc.dll
load_backend: loaded CPU backend from S:\llm\llama\ggml-cpu-alderlake.dll
build: 6641 (895329e1) with clang version 19.1.5 for x86_64-pc-windows-msvc
system info: n_threads = 12, n_threads_batch = 12, total_threads = 24

system_info: n_threads = 12 (n_threads_batch = 12) / 24 | CUDA : ARCHS = 500,610,700,750,800,860,890,1200 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX_VNNI = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |

main: binding port with default address family
main: HTTP server is listening, hostname: 127.0.0.1, port: 8081, http threads: 23
main: loading model
srv    load_model: loading model 's:\lmstudio\models\bartowski\nvidia_Nemotron-H-47B-Reasoning-128K-GGUF\nvidia_Nemotron-H-47B-Reasoning-128K-Q4_K_M.gguf'
llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 5090) (0000:01:00.0) - 30841 MiB free
llama_model_loader: max stdio successfully set to 2048
llama_model_loader: loaded meta data with 48 key-value pairs and 577 tensors from s:\lmstudio\models\bartowski\nvidia_Nemotron-H-47B-Reasoning-128K-GGUF\nvidia_Nemotron-H-47B-Reasoning-128K-Q4_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = nemotron_h
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Nemotron H 47B Reasoning 128K
llama_model_loader: - kv   3:                           general.finetune str              = Reasoning-128k
llama_model_loader: - kv   4:                           general.basename str              = Nemotron-H
llama_model_loader: - kv   5:                         general.size_label str              = 47B
llama_model_loader: - kv   6:                            general.license str              = other
llama_model_loader: - kv   7:                       general.license.name str              = nvidia-internal-scientific-research-a...
llama_model_loader: - kv   8:                       general.license.link str              = https://www.nvidia.com/en-us/agreemen...
llama_model_loader: - kv   9:                               general.tags arr[str,3]       = ["nvidia", "pytorch", "text-generation"]
llama_model_loader: - kv  10:                          general.languages arr[str,1]       = ["en"]
llama_model_loader: - kv  11:                     nemotron_h.block_count u32              = 98
llama_model_loader: - kv  12:                  nemotron_h.context_length u32              = 1048576
llama_model_loader: - kv  13:                nemotron_h.embedding_length u32              = 8192
llama_model_loader: - kv  14:             nemotron_h.feed_forward_length arr[i32,98]      = [0, 30720, 0, 30720, 0, 30720, 0, 307...
llama_model_loader: - kv  15:            nemotron_h.attention.head_count u32              = 64
llama_model_loader: - kv  16:         nemotron_h.attention.head_count_kv arr[i32,98]      = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
llama_model_loader: - kv  17: nemotron_h.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  18:    nemotron_h.attention.layer_norm_epsilon f32              = 0.000010
llama_model_loader: - kv  19:                      nemotron_h.vocab_size u32              = 131072
llama_model_loader: - kv  20:            nemotron_h.rope.dimension_count u32              = 128
llama_model_loader: - kv  21:                 nemotron_h.ssm.conv_kernel u32              = 4
llama_model_loader: - kv  22:                  nemotron_h.ssm.state_size u32              = 256
llama_model_loader: - kv  23:                 nemotron_h.ssm.group_count u32              = 8
llama_model_loader: - kv  24:                  nemotron_h.ssm.inner_size u32              = 16384
llama_model_loader: - kv  25:              nemotron_h.ssm.time_step_rank u32              = 256
llama_model_loader: - kv  26:          nemotron_h.rope.scaling.finetuned bool             = false
llama_model_loader: - kv  27:            nemotron_h.attention.key_length u32              = 128
llama_model_loader: - kv  28:          nemotron_h.attention.value_length u32              = 128
llama_model_loader: - kv  29:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  30:                         tokenizer.ggml.pre str              = tekken
llama_model_loader: - kv  31:                      tokenizer.ggml.tokens arr[str,131072]  = ["<unk>", "<s>", "</s>", "[INST]", "[...
llama_model_loader: - kv  32:                  tokenizer.ggml.token_type arr[i32,131072]  = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
llama_model_loader: - kv  33:                      tokenizer.ggml.merges arr[str,269443]  = ["─а ─а", "─а t", "e r", "i n", "─а ─...
llama_model_loader: - kv  34:                tokenizer.ggml.eos_token_id u32              = 11
llama_model_loader: - kv  35:            tokenizer.ggml.unknown_token_id u32              = 0
llama_model_loader: - kv  36:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  37:            tokenizer.ggml.padding_token_id u32              = 0
llama_model_loader: - kv  38:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  39:               tokenizer.ggml.add_sep_token bool             = false
llama_model_loader: - kv  40:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  41:                    tokenizer.chat_template str              = {{ '<SPECIAL_10>System\n' }}{%- if mes...
llama_model_loader: - kv  42:               general.quantization_version u32              = 2
llama_model_loader: - kv  43:                          general.file_type u32              = 15
llama_model_loader: - kv  44:                      quantize.imatrix.file str              = /models_out/Nemotron-H-47B-Reasoning-...
llama_model_loader: - kv  45:                   quantize.imatrix.dataset str              = /training_dir/calibration_datav5.txt
llama_model_loader: - kv  46:             quantize.imatrix.entries_count u32              = 206
llama_model_loader: - kv  47:              quantize.imatrix.chunks_count u32              = 822
llama_model_loader: - type  f32:  369 tensors
llama_model_loader: - type q4_K:  181 tensors
llama_model_loader: - type q6_K:   27 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = Q4_K - Medium
print_info: file size   = 26.24 GiB (4.82 BPW)
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: printing all EOG tokens:
load:   - 11 ('<SPECIAL_11>')
load: special tokens cache size = 1000
load: token to piece cache size = 0.8499 MB
print_info: arch             = nemotron_h
print_info: vocab_only       = 0
print_info: n_ctx_train      = 1048576
print_info: n_embd           = 8192
print_info: n_layer          = 98
print_info: n_head           = 64
print_info: n_head_kv        = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
print_info: n_rot            = 128
print_info: n_swa            = 0
print_info: is_swa_any       = 0
print_info: n_embd_head_k    = 128
print_info: n_embd_head_v    = 128
print_info: n_gqa            = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
print_info: n_embd_k_gqa     = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
print_info: n_embd_v_gqa     = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-05
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 0.0e+00
print_info: n_ff             = [0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 30720, 30720, 0, 0, 30720, 30720, 30720, 0, 30720, 0, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720]
print_info: n_expert         = 0
print_info: n_expert_used    = 0
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = -1
print_info: rope scaling     = linear
print_info: freq_base_train  = 10000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn  = 1048576
print_info: rope_finetuned   = unknown
print_info: ssm_d_conv       = 4
print_info: ssm_d_inner      = 16384
print_info: ssm_d_state      = 256
print_info: ssm_dt_rank      = 256
print_info: ssm_n_group      = 8
print_info: ssm_dt_b_c_rms   = 0
print_info: model type       = ?B
print_info: model params     = 46.79 B
print_info: general.name     = Nemotron H 47B Reasoning 128K
print_info: vocab type       = BPE
print_info: n_vocab          = 131072
print_info: n_merges         = 269443
print_info: BOS token        = 1 '<s>'
print_info: EOS token        = 11 '<SPECIAL_11>'
print_info: UNK token        = 0 '<unk>'
print_info: PAD token        = 0 '<unk>'
print_info: LF token         = 1010 '─К'
print_info: EOG token        = 11 '<SPECIAL_11>'
print_info: max token length = 150
load_tensors: loading model tensors, this can take a while... (mmap = false)
load_tensors: offloading 98 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 99/99 layers to GPU
load_tensors:        CUDA0 model buffer size = 26298.37 MiB
load_tensors:          CPU model buffer size =   576.00 MiB
................................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max     = 1
llama_context: n_ctx         = 32768
llama_context: n_ctx_per_seq = 32768
llama_context: n_batch       = 2048
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = enabled
llama_context: kv_unified    = false
llama_context: freq_base     = 10000.0
llama_context: freq_scale    = 1
llama_context: n_ctx_per_seq (32768) < n_ctx_train (1048576) -- the full capacity of the model will not be utilized
llama_context:  CUDA_Host  output buffer size =     0.50 MiB
llama_kv_cache:      CUDA0 KV buffer size =   490.00 MiB
llama_kv_cache: size =  490.00 MiB ( 32768 cells,   5 layers,  1/1 seqs), K (f16):  320.00 MiB, V (q8_0):  170.00 MiB
llama_memory_recurrent:      CUDA0 RS buffer size =   730.55 MiB
llama_memory_recurrent: size =  730.55 MiB (     1 cells,  98 layers,  1 seqs), R (f32):   10.55 MiB, S (f32):  720.00 MiB
llama_context:      CUDA0 compute buffer size =   304.24 MiB
llama_context:  CUDA_Host compute buffer size =   176.01 MiB
llama_context: graph nodes  = 2750
llama_context: graph splits = 13
common_init_from_params: added <SPECIAL_11> logit bias = -inf
common_init_from_params: setting dry_penalty_last_n to ctx_size = 32768
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
srv          init: initializing slots, n_slots = 1
slot         init: id  0 | task -1 | new slot n_ctx_slot = 32768
srv          init: Enable thinking? 0
main: model loaded
main: chat template, chat_template: {{ '<SPECIAL_10>System
' }}{%- if messages and messages[0]['role'] == 'system' -%}{{ messages[0]['content'].strip() }}{%- endif -%}{% for message in (messages[1:] if messages[0]['role'] == 'system' else messages) %}{%- if message['role'] == 'user' -%}{{ '
<SPECIAL_11>User
' + message['content'].strip() + '
<SPECIAL_11>Assistant
' }}{%- if loop.last -%}{%- if messages[0]['role'] == 'system' -%}{%- if "{'reasoning': True}" in messages[0]['content'] -%}{{ '<think>
' }}{%- elif "{'reasoning': False}" in messages[0]['content'] -%}{{ '<think></think>' }}{%- endif -%}{%- endif -%}{%- endif -%}{%- elif message['role'] == 'assistant' -%}{{ message['content'].strip() }}{%- endif -%}{%- endfor -%}, example_format: '<SPECIAL_10>System
You are a helpful assistant
<SPECIAL_11>User
Hello
<SPECIAL_11>Assistant
Hi there
<SPECIAL_11>User
How are you?
<SPECIAL_11>Assistant
'
main: server is listening on http://127.0.0.1:8081 - starting the main loop
srv  update_slots: all slots are idle
common_sampler_types_from_names: unable to match sampler by name 'tfs_z'
common_sampler_types_from_names: unable to match sampler by name 'typical_p'
slot get_availabl: id  0 | task -1 | selected slot by LRU, t_last = -1
slot launch_slot_: id  0 | task 0 | processing task
slot update_slots: id  0 | task 0 | new prompt, n_ctx_slot = 32768, n_keep = 0, n_prompt_tokens = 1060
slot update_slots: id  0 | task 0 | kv cache rm [0, end)
slot update_slots: id  0 | task 0 | prompt processing progress, n_past = 1060, n_tokens = 1060, progress = 1.000000
slot update_slots: id  0 | task 0 | prompt done, n_past = 1060, n_tokens = 1060
slot      release: id  0 | task 0 | stop processing: n_past = 1178, truncated = 0
slot print_timing: id  0 | task 0 |
prompt eval time =    1922.90 ms /  1060 tokens (    1.81 ms per token,   551.25 tokens per second)
       eval time =    3855.63 ms /   119 tokens (   32.40 ms per token,    30.86 tokens per second)
      total time =    5778.53 ms /  1179 tokens
srv  update_slots: all slots are idle
srv  log_server_r: request: POST /completion 127.0.0.1 200
common_sampler_types_from_names: unable to match sampler by name 'tfs_z'
common_sampler_types_from_names: unable to match sampler by name 'typical_p'
slot get_availabl: id  0 | task 0 | selected slot by lcs similarity, lcs_len = 1059, similarity = 0.899 (> 0.100 thold)
slot launch_slot_: id  0 | task 120 | processing task
slot update_slots: id  0 | task 120 | new prompt, n_ctx_slot = 32768, n_keep = 0, n_prompt_tokens = 1557
slot update_slots: id  0 | task 120 | n_past = 1059, cache_tokens.size() = 1178, seq_id = 0, pos_min = 1177, n_swa = 0
slot update_slots: id  0 | task 120 | forcing full prompt re-processing due to lack of cache data (likely due to SWA, see https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
slot update_slots: id  0 | task 120 | kv cache rm [0, end)
slot update_slots: id  0 | task 120 | prompt processing progress, n_past = 1557, n_tokens = 1557, progress = 1.000000
slot update_slots: id  0 | task 120 | prompt done, n_past = 1557, n_tokens = 1557
slot      release: id  0 | task 120 | stop processing: n_past = 1675, truncated = 0
slot print_timing: id  0 | task 120 |
prompt eval time =    3374.52 ms /  1557 tokens (    2.17 ms per token,   461.40 tokens per second)
       eval time =    4065.55 ms /   119 tokens (   34.16 ms per token,    29.27 tokens per second)
      total time =    7440.07 ms /  1676 tokens
srv  update_slots: all slots are idle
srv  log_server_r: request: POST /completion 127.0.0.1 200
common_sampler_types_from_names: unable to match sampler by name 'tfs_z'
common_sampler_types_from_names: unable to match sampler by name 'typical_p'
slot get_availabl: id  0 | task 120 | selected slot by lcs similarity, lcs_len = 1556, similarity = 0.929 (> 0.100 thold)
slot launch_slot_: id  0 | task 240 | processing task
slot update_slots: id  0 | task 240 | new prompt, n_ctx_slot = 32768, n_keep = 0, n_prompt_tokens = 1683
slot update_slots: id  0 | task 240 | n_past = 1556, cache_tokens.size() = 1675, seq_id = 0, pos_min = 1674, n_swa = 0
slot update_slots: id  0 | task 240 | forcing full prompt re-processing due to lack of cache data (likely due to SWA, see https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
slot update_slots: id  0 | task 240 | kv cache rm [0, end)
slot update_slots: id  0 | task 240 | prompt processing progress, n_past = 1683, n_tokens = 1683, progress = 1.000000
slot update_slots: id  0 | task 240 | prompt done, n_past = 1683, n_tokens = 1683
slot      release: id  0 | task 240 | stop processing: n_past = 1716, truncated = 0
slot print_timing: id  0 | task 240 |
prompt eval time =    3883.47 ms /  1683 tokens (    2.31 ms per token,   433.38 tokens per second)
       eval time =    1148.31 ms /    34 tokens (   33.77 ms per token,    29.61 tokens per second)
      total time =    5031.77 ms /  1717 tokens
srv  update_slots: all slots are idle
srv  log_server_r: request: POST /completion 127.0.0.1 200
common_sampler_types_from_names: unable to match sampler by name 'tfs_z'
common_sampler_types_from_names: unable to match sampler by name 'typical_p'
slot get_availabl: id  0 | task 240 | selected slot by lcs similarity, lcs_len = 1682, similarity = 0.980 (> 0.100 thold)
slot launch_slot_: id  0 | task 275 | processing task
slot update_slots: id  0 | task 275 | new prompt, n_ctx_slot = 32768, n_keep = 0, n_prompt_tokens = 1724
slot update_slots: id  0 | task 275 | n_past = 1682, cache_tokens.size() = 1716, seq_id = 0, pos_min = 1715, n_swa = 0
slot update_slots: id  0 | task 275 | forcing full prompt re-processing due to lack of cache data (likely due to SWA, see https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
slot update_slots: id  0 | task 275 | kv cache rm [0, end)
slot update_slots: id  0 | task 275 | prompt processing progress, n_past = 1724, n_tokens = 1724, progress = 1.000000
slot update_slots: id  0 | task 275 | prompt done, n_past = 1724, n_tokens = 1724
slot      release: id  0 | task 275 | stop processing: n_past = 1756, truncated = 0
slot print_timing: id  0 | task 275 |
prompt eval time =    4176.55 ms /  1724 tokens (    2.42 ms per token,   412.78 tokens per second)
       eval time =    1108.56 ms /    33 tokens (   33.59 ms per token,    29.77 tokens per second)
      total time =    5285.10 ms /  1757 tokens
srv  update_slots: all slots are idle
srv  log_server_r: request: POST /completion 127.0.0.1 200

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions