Skip to content

[SYCL] Segmentation fault after #5411 #5469

Closed
@qnixsynapse

Description

@qnixsynapse

System: Arch Linux,
CPU: Intel i3 12th gen
GPU: Intel Arc A750
RAM: 16GB

llama.cpp version: b2134

Previously the build was failing with -DLLAMA_SYCL_F16=ON which has been fixed in #5411. Upon running this build, it crashes with segmentation fault.

logs:

bin/main -m ~/Public/Models/Weights/tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf  -p "hello " -n 1000 -ngl 99
Log start
main: build = 2134 (099afc62)
main: built with Intel(R) oneAPI DPC++/C++ Compiler 2024.0.0 (2024.0.0.20231017) for x86_64-unknown-linux-gnu
main: seed  = 1707789832
GGML_SYCL_DEBUG=0
ggml_init_sycl: GGML_SYCL_F16:   yes
ggml_init_sycl: SYCL_USE_XMX: yes
found 4 SYCL devices:
  Device 0: Intel(R) Arc(TM) A750 Graphics,	compute capability 1.3,
	max compute_units 448,	max work group size 1024,	max sub group size 32,	global mem size 8096681984
  Device 1: Intel(R) FPGA Emulation Device,	compute capability 1.2,
	max compute_units 4,	max work group size 67108864,	max sub group size 64,	global mem size 16577347584
  Device 2: 12th Gen Intel(R) Core(TM) i3-12100F,	compute capability 3.0,
	max compute_units 4,	max work group size 8192,	max sub group size 64,	global mem size 16577347584
  Device 3: Intel(R) Arc(TM) A750 Graphics,	compute capability 3.0,
	max compute_units 448,	max work group size 1024,	max sub group size 32,	global mem size 8096681984
Using device 0 (Intel(R) Arc(TM) A750 Graphics) as main device
llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from /home/tensorblast/Public/Models/Weights/tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.name str              = tinyllama_tinyllama-1.1b-chat-v1.0
llama_model_loader: - kv   2:                       llama.context_length u32              = 2048
llama_model_loader: - kv   3:                     llama.embedding_length u32              = 2048
llama_model_loader: - kv   4:                          llama.block_count u32              = 22
llama_model_loader: - kv   5:                  llama.feed_forward_length u32              = 5632
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32              = 64
llama_model_loader: - kv   7:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32              = 4
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  10:                       llama.rope.freq_base f32              = 10000.000000
llama_model_loader: - kv  11:                          general.file_type u32              = 15
llama_model_loader: - kv  12:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  13:                      tokenizer.ggml.tokens arr[str,32000]   = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv  14:                      tokenizer.ggml.scores arr[f32,32000]   = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv  15:                  tokenizer.ggml.token_type arr[i32,32000]   = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv  16:                      tokenizer.ggml.merges arr[str,61249]   = ["▁ t", "e r", "i n", "▁ a", "e n...
llama_model_loader: - kv  17:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  18:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  19:            tokenizer.ggml.unknown_token_id u32              = 0
llama_model_loader: - kv  20:            tokenizer.ggml.padding_token_id u32              = 2
llama_model_loader: - kv  21:                    tokenizer.chat_template str              = {% for message in messages %}\n{% if m...
llama_model_loader: - kv  22:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:   45 tensors
llama_model_loader: - type q4_K:  135 tensors
llama_model_loader: - type q6_K:   21 tensors
llm_load_vocab: special tokens definition check successful ( 259/32000 ).
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 32000
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: n_ctx_train      = 2048
llm_load_print_meta: n_embd           = 2048
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 4
llm_load_print_meta: n_layer          = 22
llm_load_print_meta: n_rot            = 64
llm_load_print_meta: n_embd_head_k    = 64
llm_load_print_meta: n_embd_head_v    = 64
llm_load_print_meta: n_gqa            = 8
llm_load_print_meta: n_embd_k_gqa     = 256
llm_load_print_meta: n_embd_v_gqa     = 256
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff             = 5632
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx  = 2048
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: model type       = 1B
llm_load_print_meta: model ftype      = Q4_K - Medium
llm_load_print_meta: model params     = 1.10 B
llm_load_print_meta: model size       = 636.18 MiB (4.85 BPW) 
llm_load_print_meta: general.name     = tinyllama_tinyllama-1.1b-chat-v1.0
llm_load_print_meta: BOS token        = 1 '<s>'
llm_load_print_meta: EOS token        = 2 '</s>'
llm_load_print_meta: UNK token        = 0 '<unk>'
llm_load_print_meta: PAD token        = 2 '</s>'
llm_load_print_meta: LF token         = 13 '<0x0A>'
llm_load_tensors: ggml ctx size =    0.15 MiB
llm_load_tensors: offloading 22 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 23/23 layers to GPU
llm_load_tensors:            buffer size =   601.02 MiB
llm_load_tensors:        CPU buffer size =    35.16 MiB
.....................................................................................
llama_new_context_with_model: n_ctx      = 512
llama_new_context_with_model: freq_base  = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init:            KV buffer size =    11.00 MiB
llama_new_context_with_model: KV self size  =   11.00 MiB, K (f16):    5.50 MiB, V (f16):    5.50 MiB
llama_new_context_with_model:        CPU input buffer size   =     5.01 MiB
zsh: segmentation fault (core dumped)  bin/main -m  -p "hello " -n

The build without -DLLAMA_SYCL_F16=ON works.

Confirmed: This crash started happening after #5411

Metadata

Metadata

Assignees

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions