Skip to content

Bug: infill reference crashed #8138

@kidoln

Description

@kidoln

What happened?

./llama-infill -t 10 -ngl 0 -m ../../models/Publisher/Repository/codellama-13b.Q3_K_S.gguf --temp 0.7 --repeat_penalty 1.1 -n 20 --in-prefix "def helloworld():\n print("hell" --in-suffix "\n print("goodbye world")\n "

this command causes llama.cpp abort

Name and Version

./llama-llava-cli --version
version: 3235 (8854044)
built with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.5.0

What operating system are you seeing the problem on?

Mac

Relevant log output

Log start
main: build = 3235 (88540445)
main: built with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.5.0
main: seed  = 1719410022
llama_model_loader: loaded meta data with 20 key-value pairs and 363 tensors from ../../models/Publisher/Repository/codellama-13b.Q3_K_S.gguf (version GGUF V2)
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.name str              = codellama_codellama-13b-hf
llama_model_loader: - kv   2:                       llama.context_length u32              = 16384
llama_model_loader: - kv   3:                     llama.embedding_length u32              = 5120
llama_model_loader: - kv   4:                          llama.block_count u32              = 40
llama_model_loader: - kv   5:                  llama.feed_forward_length u32              = 13824
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv   7:                 llama.attention.head_count u32              = 40
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32              = 40
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  10:                       llama.rope.freq_base f32              = 1000000.000000
llama_model_loader: - kv  11:                          general.file_type u32              = 11
llama_model_loader: - kv  12:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  13:                      tokenizer.ggml.tokens arr[str,32016]   = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv  14:                      tokenizer.ggml.scores arr[f32,32016]   = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv  15:                  tokenizer.ggml.token_type arr[i32,32016]   = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv  16:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  17:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  18:            tokenizer.ggml.unknown_token_id u32              = 0
llama_model_loader: - kv  19:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:   81 tensors
llama_model_loader: - type q3_K:  281 tensors
llama_model_loader: - type q6_K:    1 tensors
llm_load_vocab: special tokens cache size = 259
llm_load_vocab: token to piece cache size = 0.1686 MB
llm_load_print_meta: format           = GGUF V2
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 32016
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: n_ctx_train      = 16384
llm_load_print_meta: n_embd           = 5120
llm_load_print_meta: n_head           = 40
llm_load_print_meta: n_head_kv        = 40
llm_load_print_meta: n_layer          = 40
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 1
llm_load_print_meta: n_embd_k_gqa     = 5120
llm_load_print_meta: n_embd_v_gqa     = 5120
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 13824
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 1000000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn  = 16384
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: model type       = 13B
llm_load_print_meta: model ftype      = Q3_K - Small
llm_load_print_meta: model params     = 13.02 B
llm_load_print_meta: model size       = 5.27 GiB (3.48 BPW)
llm_load_print_meta: general.name     = codellama_codellama-13b-hf
llm_load_print_meta: BOS token        = 1 '<s>'
llm_load_print_meta: EOS token        = 2 '</s>'
llm_load_print_meta: UNK token        = 0 '<unk>'
llm_load_print_meta: LF token         = 13 '<0x0A>'
llm_load_print_meta: max token length = 48
llm_load_tensors: ggml ctx size =    0.17 MiB
llm_load_tensors: offloading 0 repeating layers to GPU
llm_load_tensors: offloaded 0/41 layers to GPU
llm_load_tensors:        CPU buffer size =  5396.21 MiB
...................................................................................................
llama_new_context_with_model: n_ctx      = 16384
llama_new_context_with_model: n_batch    = 2048
llama_new_context_with_model: n_ubatch   = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base  = 1000000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init:        CPU KV buffer size = 12800.00 MiB
llama_new_context_with_model: KV self size  = 12800.00 MiB, K (f16): 6400.00 MiB, V (f16): 6400.00 MiB
llama_new_context_with_model:        CPU  output buffer size =     0.12 MiB
llama_new_context_with_model:        CPU compute buffer size =  1352.01 MiB
llama_new_context_with_model: graph nodes  = 1286
llama_new_context_with_model: graph splits = 642

system_info: n_threads = 10 / 11 | AVX = 0 | AVX_VNNI = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 0 | NEON = 1 | SVE = 0 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 |
libc++abi: terminating due to uncaught exception of type std::out_of_range: vector
[1]    37264 abort      ./llama-infill -t 10 -ngl 0 -m  --temp 0.7 --repeat_penalty 1.1 -n 20

Metadata

Metadata

Assignees

No one assigned

    Labels

    bug-unconfirmedhigh severityUsed to report high severity bugs in llama.cpp (Malfunctioning hinder important workflow)

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions