Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement non-greedy tokenizer that tries to maximize token lengths #242

Merged
merged 2 commits into from
Mar 17, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions main.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -845,6 +845,8 @@ int main(int argc, char ** argv) {

std::vector<float> logits;

// Add a space in front of the first character to match OG llama tokenizer behavior
params.prompt.insert(0, 1, ' ');
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is the space meant to be a separate token? I noticed that it often get fused with the first user provided token.

Copy link
Contributor Author

@thement thement Mar 17, 2023

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It should be fused to the first token! This is how original python llama code parses it.
I can dig out more details if you want.

// tokenize the prompt
std::vector<gpt_vocab::id> embd_inp = ::llama_tokenize(vocab, params.prompt, true);

Expand Down
68 changes: 42 additions & 26 deletions utils.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -275,41 +275,57 @@ std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::stri
return tokens;
}

// TODO: Calculate this constant from the vocabulary
#define MAX_TOKEN_LEN 18
// SentencePiece implementation after https://guillaume-be.github.io/2020-05-30/sentence_piece
std::vector<gpt_vocab::id> llama_tokenize(const gpt_vocab & vocab, const std::string & text, bool bos) {
//auto res = gpt_tokenize(vocab, text);

//if (bos) {
// res.insert(res.begin(), 1); // TODO: replace with vocab.bos
//}

std::vector<gpt_vocab::id> res;

if (bos) {
res.push_back(1); // TODO: replace with vocab.bos
}

//find the longest token that matches the text
int pos = 0;
while (true) {
int l = 0;
int t = 0;
for (const auto & kv : vocab.id_to_token) {
if (kv.second.size() < l) continue;
if (kv.second.size() > text.size() - pos) continue;
if (text.substr(pos, kv.second.size()) == kv.second) {
l = kv.second.size();
t = kv.first;
std::vector<int> score;
std::vector<gpt_vocab::id> prev;
int len = text.length();

score.resize(len + 1);
prev.resize(len + 1);

// Forward pass
for (int i = 0; i < len; i++) {
int max_len = std::min(len - i, MAX_TOKEN_LEN);
for (int sub_len = 1; sub_len <= len - i; sub_len++) {
auto sub = text.substr(i, sub_len);
auto token = vocab.token_to_id.find(sub);
if (token != vocab.token_to_id.end()) {
int token_score = sub.length() * sub.length();
int local_score = score[i] + token_score;
int next = i + sub_len;
if (score[next] < local_score) {
score[next] = local_score;
prev[next] = (*token).second;
}
}
}
}

if (l == 0) {
break;
// Backward pass
int i = len;
while (i > 0) {
gpt_vocab::id token_id = prev[i];
if (token_id == 0) {
// TODO: Return error or something more meaningful
printf("failed to tokenize string!\n");
break;
}
res.push_back(token_id);
auto token = (*vocab.id_to_token.find(token_id)).second;
i -= token.length();
}

res.push_back(t);
pos += l;
if (bos) {
res.push_back(1); // TODO: replace with vocab.bos
}

// Pieces are in reverse order so correct that
std::reverse(res.begin(), res.end());

return res;
}

Expand Down