Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add explicit dense conjugate dot product #755

Merged
merged 6 commits into from
Apr 29, 2021
Merged

Add explicit dense conjugate dot product #755

merged 6 commits into from
Apr 29, 2021

Conversation

upsj
Copy link
Member

@upsj upsj commented Apr 27, 2021

Right now, the conjugation happens implicitly in compute_dot, but I think it makes more sense to have both normal and conjugate dot product available.

TODO

  • Add true complex tests

@upsj upsj added the 1:ST:ready-for-review This PR is ready for review label Apr 27, 2021
@upsj upsj self-assigned this Apr 27, 2021
@ginkgo-bot ginkgo-bot added mod:core This is related to the core module. mod:cuda This is related to the CUDA module. mod:hip This is related to the HIP module. mod:openmp This is related to the OpenMP module. mod:reference This is related to the reference module. reg:testing This is related to testing. type:matrix-format This is related to the Matrix formats type:solver This is related to the solvers labels Apr 27, 2021
Copy link
Member

@yhmtsai yhmtsai left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM. I think the x->conjugate_dot(y) = x^H y is more close to the representation?

omp/matrix/dense_kernels.cpp Outdated Show resolved Hide resolved
reference/matrix/dense_kernels.cpp Outdated Show resolved Hide resolved
Copy link
Member

@pratikvn pratikvn left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM!

include/ginkgo/core/matrix/dense.hpp Outdated Show resolved Hide resolved
Co-authored-by: Pratik Nayak <pratik.nayak@kit.edu>
@upsj
Copy link
Member Author

upsj commented Apr 28, 2021

I can confirm that this works and passes the tests on CUDA and HIP using the cuda:101-gnu8-llvm7-intel2019 image.

Copy link
Member

@yhmtsai yhmtsai left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM

@upsj upsj removed the 1:ST:ready-for-review This PR is ready for review label Apr 28, 2021
@upsj upsj added the 1:ST:ready-to-merge This PR is ready to merge. label Apr 28, 2021
@upsj upsj merged commit df83cf2 into develop Apr 29, 2021
@upsj upsj deleted the dense_conj_dot branch April 29, 2021 05:20
tcojean added a commit that referenced this pull request Aug 20, 2021
Ginkgo release 1.4.0

The Ginkgo team is proud to announce the new Ginkgo minor release 1.4.0. This
release brings most of the Ginkgo functionality to the Intel DPC++ ecosystem
which enables Intel-GPU and CPU execution. The only Ginkgo features which have
not been ported yet are some preconditioners.

Ginkgo's mixed-precision support is greatly enhanced thanks to:
1. The new Accessor concept, which allows writing kernels featuring on-the-fly
memory compression, among other features. The accessor can be used as
header-only, see the [accessor BLAS benchmarks repository](https://github.com/ginkgo-project/accessor-BLAS/tree/develop) as a usage example.
2. All LinOps now transparently support mixed-precision execution. By default,
this is done through a temporary copy which may have a performance impact but
already allows mixed-precision research.

Native mixed-precision ELL kernels are implemented which do not see this cost.
The accessor is also leveraged in a new CB-GMRES solver which allows for
performance improvements by compressing the Krylov basis vectors. Many other
features have been added to Ginkgo, such as reordering support, a new IDR
solver, Incomplete Cholesky preconditioner, matrix assembly support (only CPU
for now), machine topology information, and more!

Supported systems and requirements:
+ For all platforms, cmake 3.13+
+ C++14 compliant compiler
+ Linux and MacOS
  + gcc: 5.3+, 6.3+, 7.3+, all versions after 8.1+
  + clang: 3.9+
  + Intel compiler: 2018+
  + Apple LLVM: 8.0+
  + CUDA module: CUDA 9.0+
  + HIP module: ROCm 3.5+
  + DPC++ module: Intel OneAPI 2021.3. Set the CXX compiler to `dpcpp`.
+ Windows
  + MinGW and Cygwin: gcc 5.3+, 6.3+, 7.3+, all versions after 8.1+
  + Microsoft Visual Studio: VS 2019
  + CUDA module: CUDA 9.0+, Microsoft Visual Studio
  + OpenMP module: MinGW or Cygwin.


Algorithm and important feature additions:
+ Add a new DPC++ Executor for SYCL execution and other base utilities
  [#648](#648), [#661](#661), [#757](#757), [#832](#832)
+ Port matrix formats, solvers and related kernels to DPC++. For some kernels,
  also make use of a shared kernel implementation for all executors (except
  Reference). [#710](#710), [#799](#799), [#779](#779), [#733](#733), [#844](#844), [#843](#843), [#789](#789), [#845](#845), [#849](#849), [#855](#855), [#856](#856)
+ Add accessors which allow multi-precision kernels, among other things.
  [#643](#643), [#708](#708)
+ Add support for mixed precision operations through apply in all LinOps. [#677](#677)
+ Add incomplete Cholesky factorizations and preconditioners as well as some
  improvements to ILU. [#672](#672), [#837](#837), [#846](#846)
+ Add an AMGX implementation and kernels on all devices but DPC++.
  [#528](#528), [#695](#695), [#860](#860)
+ Add a new mixed-precision capability solver, Compressed Basis GMRES
  (CB-GMRES). [#693](#693), [#763](#763)
+ Add the IDR(s) solver. [#620](#620)
+ Add a new fixed-size block CSR matrix format (for the Reference executor).
  [#671](#671), [#730](#730)
+ Add native mixed-precision support to the ELL format. [#717](#717), [#780](#780)
+ Add Reverse Cuthill-McKee reordering [#500](#500), [#649](#649)
+ Add matrix assembly support on CPUs. [#644](#644)
+ Extends ISAI from triangular to general and spd matrices. [#690](#690)

Other additions:
+ Add the possibility to apply real matrices to complex vectors.
  [#655](#655), [#658](#658)
+ Add functions to compute the absolute of a matrix format. [#636](#636)
+ Add symmetric permutation and improve existing permutations.
  [#684](#684), [#657](#657), [#663](#663)
+ Add a MachineTopology class with HWLOC support [#554](#554), [#697](#697)
+ Add an implicit residual norm criterion. [#702](#702), [#818](#818), [#850](#850)
+ Row-major accessor is generalized to more than 2 dimensions and a new
  "block column-major" accessor has been added. [#707](#707)
+ Add an heat equation example. [#698](#698), [#706](#706)
+ Add ccache support in CMake and CI. [#725](#725), [#739](#739)
+ Allow tuning and benchmarking variables non intrusively. [#692](#692)
+ Add triangular solver benchmark [#664](#664)
+ Add benchmarks for BLAS operations [#772](#772), [#829](#829)
+ Add support for different precisions and consistent index types in benchmarks.
  [#675](#675), [#828](#828)
+ Add a Github bot system to facilitate development and PR management.
  [#667](#667), [#674](#674), [#689](#689), [#853](#853)
+ Add Intel (DPC++) CI support and enable CI on HPC systems. [#736](#736), [#751](#751), [#781](#781)
+ Add ssh debugging for Github Actions CI. [#749](#749)
+ Add pipeline segmentation for better CI speed. [#737](#737)


Changes:
+ Add a Scalar Jacobi specialization and kernels. [#808](#808), [#834](#834), [#854](#854)
+ Add implicit residual log for solvers and benchmarks. [#714](#714)
+ Change handling of the conjugate in the dense dot product. [#755](#755)
+ Improved Dense stride handling. [#774](#774)
+ Multiple improvements to the OpenMP kernels performance, including COO,
an exclusive prefix sum, and more. [#703](#703), [#765](#765), [#740](#740)
+ Allow specialization of submatrix and other dense creation functions in solvers. [#718](#718)
+ Improved Identity constructor and treatment of rectangular matrices. [#646](#646)
+ Allow CUDA/HIP executors to select allocation mode. [#758](#758)
+ Check if executors share the same memory. [#670](#670)
+ Improve test install and smoke testing support. [#721](#721)
+ Update the JOSS paper citation and add publications in the documentation.
  [#629](#629), [#724](#724)
+ Improve the version output. [#806](#806)
+ Add some utilities for dim and span. [#821](#821)
+ Improved solver and preconditioner benchmarks. [#660](#660)
+ Improve benchmark timing and output. [#669](#669), [#791](#791), [#801](#801), [#812](#812)


Fixes:
+ Sorting fix for the Jacobi preconditioner. [#659](#659)
+ Also log the first residual norm in CGS [#735](#735)
+ Fix BiCG and HIP CSR to work with complex matrices. [#651](#651)
+ Fix Coo SpMV on strided vectors. [#807](#807)
+ Fix segfault of extract_diagonal, add short-and-fat test. [#769](#769)
+ Fix device_reset issue by moving counter/mutex to device. [#810](#810)
+ Fix `EnableLogging` superclass. [#841](#841)
+ Support ROCm 4.1.x and breaking HIP_PLATFORM changes. [#726](#726)
+ Decreased test size for a few device tests. [#742](#742)
+ Fix multiple issues with our CMake HIP and RPATH setup.
  [#712](#712), [#745](#745), [#709](#709)
+ Cleanup our CMake installation step. [#713](#713)
+ Various simplification and fixes to the Windows CMake setup. [#720](#720), [#785](#785)
+ Simplify third-party integration. [#786](#786)
+ Improve Ginkgo device arch flags management. [#696](#696)
+ Other fixes and improvements to the CMake setup.
  [#685](#685), [#792](#792), [#705](#705), [#836](#836)
+ Clarification of dense norm documentation [#784](#784)
+ Various development tools fixes and improvements [#738](#738), [#830](#830), [#840](#840)
+ Make multiple operators/constructors explicit. [#650](#650), [#761](#761)
+ Fix some issues, memory leaks and warnings found by MSVC.
  [#666](#666), [#731](#731)
+ Improved solver memory estimates and consistent iteration counts [#691](#691)
+ Various logger improvements and fixes [#728](#728), [#743](#743), [#754](#754)
+ Fix for ForwardIterator requirements in iterator_factory. [#665](#665)
+ Various benchmark fixes. [#647](#647), [#673](#673), [#722](#722)
+ Various CI fixes and improvements. [#642](#642), [#641](#641), [#795](#795), [#783](#783), [#793](#793), [#852](#852)


Related PR: #857
tcojean added a commit that referenced this pull request Aug 23, 2021
Release 1.4.0 to master

The Ginkgo team is proud to announce the new Ginkgo minor release 1.4.0. This
release brings most of the Ginkgo functionality to the Intel DPC++ ecosystem
which enables Intel-GPU and CPU execution. The only Ginkgo features which have
not been ported yet are some preconditioners.

Ginkgo's mixed-precision support is greatly enhanced thanks to:
1. The new Accessor concept, which allows writing kernels featuring on-the-fly
memory compression, among other features. The accessor can be used as
header-only, see the [accessor BLAS benchmarks repository](https://github.com/ginkgo-project/accessor-BLAS/tree/develop) as a usage example.
2. All LinOps now transparently support mixed-precision execution. By default,
this is done through a temporary copy which may have a performance impact but
already allows mixed-precision research.

Native mixed-precision ELL kernels are implemented which do not see this cost.
The accessor is also leveraged in a new CB-GMRES solver which allows for
performance improvements by compressing the Krylov basis vectors. Many other
features have been added to Ginkgo, such as reordering support, a new IDR
solver, Incomplete Cholesky preconditioner, matrix assembly support (only CPU
for now), machine topology information, and more!

Supported systems and requirements:
+ For all platforms, cmake 3.13+
+ C++14 compliant compiler
+ Linux and MacOS
  + gcc: 5.3+, 6.3+, 7.3+, all versions after 8.1+
  + clang: 3.9+
  + Intel compiler: 2018+
  + Apple LLVM: 8.0+
  + CUDA module: CUDA 9.0+
  + HIP module: ROCm 3.5+
  + DPC++ module: Intel OneAPI 2021.3. Set the CXX compiler to `dpcpp`.
+ Windows
  + MinGW and Cygwin: gcc 5.3+, 6.3+, 7.3+, all versions after 8.1+
  + Microsoft Visual Studio: VS 2019
  + CUDA module: CUDA 9.0+, Microsoft Visual Studio
  + OpenMP module: MinGW or Cygwin.


Algorithm and important feature additions:
+ Add a new DPC++ Executor for SYCL execution and other base utilities
  [#648](#648), [#661](#661), [#757](#757), [#832](#832)
+ Port matrix formats, solvers and related kernels to DPC++. For some kernels,
  also make use of a shared kernel implementation for all executors (except
  Reference). [#710](#710), [#799](#799), [#779](#779), [#733](#733), [#844](#844), [#843](#843), [#789](#789), [#845](#845), [#849](#849), [#855](#855), [#856](#856)
+ Add accessors which allow multi-precision kernels, among other things.
  [#643](#643), [#708](#708)
+ Add support for mixed precision operations through apply in all LinOps. [#677](#677)
+ Add incomplete Cholesky factorizations and preconditioners as well as some
  improvements to ILU. [#672](#672), [#837](#837), [#846](#846)
+ Add an AMGX implementation and kernels on all devices but DPC++.
  [#528](#528), [#695](#695), [#860](#860)
+ Add a new mixed-precision capability solver, Compressed Basis GMRES
  (CB-GMRES). [#693](#693), [#763](#763)
+ Add the IDR(s) solver. [#620](#620)
+ Add a new fixed-size block CSR matrix format (for the Reference executor).
  [#671](#671), [#730](#730)
+ Add native mixed-precision support to the ELL format. [#717](#717), [#780](#780)
+ Add Reverse Cuthill-McKee reordering [#500](#500), [#649](#649)
+ Add matrix assembly support on CPUs. [#644](#644)
+ Extends ISAI from triangular to general and spd matrices. [#690](#690)

Other additions:
+ Add the possibility to apply real matrices to complex vectors.
  [#655](#655), [#658](#658)
+ Add functions to compute the absolute of a matrix format. [#636](#636)
+ Add symmetric permutation and improve existing permutations.
  [#684](#684), [#657](#657), [#663](#663)
+ Add a MachineTopology class with HWLOC support [#554](#554), [#697](#697)
+ Add an implicit residual norm criterion. [#702](#702), [#818](#818), [#850](#850)
+ Row-major accessor is generalized to more than 2 dimensions and a new
  "block column-major" accessor has been added. [#707](#707)
+ Add an heat equation example. [#698](#698), [#706](#706)
+ Add ccache support in CMake and CI. [#725](#725), [#739](#739)
+ Allow tuning and benchmarking variables non intrusively. [#692](#692)
+ Add triangular solver benchmark [#664](#664)
+ Add benchmarks for BLAS operations [#772](#772), [#829](#829)
+ Add support for different precisions and consistent index types in benchmarks.
  [#675](#675), [#828](#828)
+ Add a Github bot system to facilitate development and PR management.
  [#667](#667), [#674](#674), [#689](#689), [#853](#853)
+ Add Intel (DPC++) CI support and enable CI on HPC systems. [#736](#736), [#751](#751), [#781](#781)
+ Add ssh debugging for Github Actions CI. [#749](#749)
+ Add pipeline segmentation for better CI speed. [#737](#737)


Changes:
+ Add a Scalar Jacobi specialization and kernels. [#808](#808), [#834](#834), [#854](#854)
+ Add implicit residual log for solvers and benchmarks. [#714](#714)
+ Change handling of the conjugate in the dense dot product. [#755](#755)
+ Improved Dense stride handling. [#774](#774)
+ Multiple improvements to the OpenMP kernels performance, including COO,
an exclusive prefix sum, and more. [#703](#703), [#765](#765), [#740](#740)
+ Allow specialization of submatrix and other dense creation functions in solvers. [#718](#718)
+ Improved Identity constructor and treatment of rectangular matrices. [#646](#646)
+ Allow CUDA/HIP executors to select allocation mode. [#758](#758)
+ Check if executors share the same memory. [#670](#670)
+ Improve test install and smoke testing support. [#721](#721)
+ Update the JOSS paper citation and add publications in the documentation.
  [#629](#629), [#724](#724)
+ Improve the version output. [#806](#806)
+ Add some utilities for dim and span. [#821](#821)
+ Improved solver and preconditioner benchmarks. [#660](#660)
+ Improve benchmark timing and output. [#669](#669), [#791](#791), [#801](#801), [#812](#812)


Fixes:
+ Sorting fix for the Jacobi preconditioner. [#659](#659)
+ Also log the first residual norm in CGS [#735](#735)
+ Fix BiCG and HIP CSR to work with complex matrices. [#651](#651)
+ Fix Coo SpMV on strided vectors. [#807](#807)
+ Fix segfault of extract_diagonal, add short-and-fat test. [#769](#769)
+ Fix device_reset issue by moving counter/mutex to device. [#810](#810)
+ Fix `EnableLogging` superclass. [#841](#841)
+ Support ROCm 4.1.x and breaking HIP_PLATFORM changes. [#726](#726)
+ Decreased test size for a few device tests. [#742](#742)
+ Fix multiple issues with our CMake HIP and RPATH setup.
  [#712](#712), [#745](#745), [#709](#709)
+ Cleanup our CMake installation step. [#713](#713)
+ Various simplification and fixes to the Windows CMake setup. [#720](#720), [#785](#785)
+ Simplify third-party integration. [#786](#786)
+ Improve Ginkgo device arch flags management. [#696](#696)
+ Other fixes and improvements to the CMake setup.
  [#685](#685), [#792](#792), [#705](#705), [#836](#836)
+ Clarification of dense norm documentation [#784](#784)
+ Various development tools fixes and improvements [#738](#738), [#830](#830), [#840](#840)
+ Make multiple operators/constructors explicit. [#650](#650), [#761](#761)
+ Fix some issues, memory leaks and warnings found by MSVC.
  [#666](#666), [#731](#731)
+ Improved solver memory estimates and consistent iteration counts [#691](#691)
+ Various logger improvements and fixes [#728](#728), [#743](#743), [#754](#754)
+ Fix for ForwardIterator requirements in iterator_factory. [#665](#665)
+ Various benchmark fixes. [#647](#647), [#673](#673), [#722](#722)
+ Various CI fixes and improvements. [#642](#642), [#641](#641), [#795](#795), [#783](#783), [#793](#793), [#852](#852)

Related PR: #866
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
1:ST:ready-to-merge This PR is ready to merge. mod:core This is related to the core module. mod:cuda This is related to the CUDA module. mod:hip This is related to the HIP module. mod:openmp This is related to the OpenMP module. mod:reference This is related to the reference module. reg:testing This is related to testing. type:matrix-format This is related to the Matrix formats type:solver This is related to the solvers
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants