Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(speculative-sampling): add grammar support #203

Merged
merged 2 commits into from
Sep 5, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/test.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ jobs:
run: go version
- name: Test
run: |
CMAKE_ARGS="-DLLAMA_F16C=OFF -DLLAMA_AVX512=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF" make test
CMAKE_ARGS="-DLLAMA_METAL=OFF -DLLAMA_F16C=OFF -DLLAMA_AVX512=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF" make test

macOS-metal-latest:
runs-on: macOS-latest
Expand Down
78 changes: 66 additions & 12 deletions binding.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -619,14 +619,32 @@ int speculative_sampling(void* params_ptr, void* target_model, void* draft_model
// used to determine end of generation
bool has_eos = false;

// grammar stuff
struct llama_grammar * grammar_dft = NULL;
struct llama_grammar * grammar_tgt = NULL;

grammar_parser::parse_state parsed_grammar;

// if requested - load the grammar, error checking is omitted for brevity
if (!params.grammar.empty()) {
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
// will be empty (default) if there are parse errors
if (parsed_grammar.rules.empty()) {
return 1;
}

std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
grammar_tgt = llama_grammar_init(grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
}

const auto t_dec_start = ggml_time_us();

while (true) {
// sample from the drafted tokens if any
int i_dft = 0;
while (true) {
const llama_token id = llama_sample_token(ctx_tgt, NULL, NULL, params, last_tokens, candidates, i_dft);

// sample from the target model
const llama_token id = llama_sample_token(ctx_tgt, NULL, grammar_tgt, params, last_tokens, candidates, i_dft);
// remember which tokens were sampled - used for repetition penalties during sampling
last_tokens.erase(last_tokens.begin());
last_tokens.push_back(id);

Expand All @@ -644,6 +662,7 @@ int speculative_sampling(void* params_ptr, void* target_model, void* draft_model

++n_predict;

// check if the draft matches the target
if (i_dft < (int) drafted.size() && id == drafted[i_dft]) {
LOG("drafted token %d accepted\n", id);
++n_accept;
Expand All @@ -654,6 +673,13 @@ int speculative_sampling(void* params_ptr, void* target_model, void* draft_model
continue;
}

if (i_dft < (int) drafted.size()) {
LOG("the %dth drafted token (%d, '%s') does not match the sampled target token (%d, '%s') - rejected\n",
i_dft, drafted[i_dft], llama_token_to_piece(ctx_dft, drafted[i_dft]).c_str(), id, token_str.c_str());
} else {
LOG("out of drafted tokens\n");
}

// the drafted token was rejected or we are out of drafted tokens
llama_eval(ctx_dft, &id, 1, n_past_dft, params.n_threads);
++n_past_dft;
Expand All @@ -668,7 +694,16 @@ int speculative_sampling(void* params_ptr, void* target_model, void* draft_model
break;
}

// sample n_draft tokens from the draft model picking the best token
if (grammar_tgt) {
if (grammar_dft) {
llama_grammar_free(grammar_dft);
}
grammar_dft = llama_grammar_copy(grammar_tgt);

LOG("copied target grammar to draft grammar\n");
}

// sample n_draft tokens from the draft model using greedy decoding
int n_past_cur = n_past_dft;
for (int i = 0; i < n_draft; ++i) {
float * logits = llama_get_logits(ctx_dft);
Expand All @@ -680,32 +715,48 @@ int speculative_sampling(void* params_ptr, void* target_model, void* draft_model

llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };

if (grammar_dft != NULL) {
llama_sample_grammar(ctx_dft, &cur_p, grammar_dft);
}

// computes softmax and sorts the candidates
llama_sample_softmax(ctx_dft, &cur_p);

for (int i = 0; i < 3; ++i) {
LOG(" - draft candidate %d: %d (%.3f)\n", i, cur_p.data[i].id, cur_p.data[i].p);
}

// too low probability, stop drafting
// TODO: better logic?
if (cur_p.data[0].p < 2*cur_p.data[1].p) {
LOG("stopping drafting, probability too low: %.3f < 2*%.3f\n", cur_p.data[0].p, cur_p.data[1].p);
break;
}

drafted.push_back(cur_p.data[0].id);
// drafted token
const llama_token id = cur_p.data[0].id;

drafted.push_back(id);
++n_drafted;

if (i < n_draft - 1) {
// evaluate the drafted token on the draft model
llama_eval(ctx_dft, &drafted.back(), 1, n_past_cur, params.n_threads);
++n_past_cur;
// no need to evaluate the last drafted token, since we won't use the result
if (i == n_draft - 1) {
break;
}

// evaluate the drafted token on the draft model
llama_eval(ctx_dft, &drafted.back(), 1, n_past_cur, params.n_threads);
++n_past_cur;

if (grammar_dft != NULL) {
llama_grammar_accept_token(ctx_dft, grammar_dft, id);
}
}

// evaluate the target model on the drafted tokens
llama_eval(ctx_tgt, drafted.data(), drafted.size(), n_past_tgt, params.n_threads);
++n_past_tgt;


// the first token is always proposed by the traget model before the speculation loop
drafted.erase(drafted.begin());
}
if (debug) {
Expand All @@ -732,7 +783,10 @@ int speculative_sampling(void* params_ptr, void* target_model, void* draft_model

fprintf(stderr, "\n\n");
}

if (grammar_dft != NULL) {
llama_grammar_free(grammar_dft);
llama_grammar_free(grammar_tgt);
}
strcpy(result, res.c_str());
return 0;
}
Expand Down