Generates an HTML single-sample report
numpy
pandas
anndata
scanpy
squidpy
matplotlib
plotly
sklearn
markdown
Or use env.yml
to create conda environment
./sample_report.py -f my_data.h5ad
Input data should contain a phenotype
column in adata.obs
usage: sample_report.py [-h] -f FILE [-c COLUMN] [--removeMarkers REMOVEMARKERS [REMOVEMARKERS ...]] [--nuclearMarker NUCLEARMARKER] [--resolution RESOLUTION] [--leidenRange LEIDENRANGE [LEIDENRANGE ...]] [--radius RADIUS]
optional arguments:
-h
, --help
show this help message and exit
-f
FILE, --file
FILE anndata h5ad cell feature table
-c
COLUMN, --column
COLUMN
column name for phenotypes, default is 'phenotype'
--removeMarkers
REMOVEMARKERS [REMOVEMARKERS ...]
Patterns to remove markers by. Example: 'DAPI' will remove
'DAPI_1','DAPI_2', etc. Markers are removed from adata.X but maintained
in raw. default is 'DAPI' 'AF'
--nuclearMarker
NUCLEARMARKER
Name of nuclear marker in every cycle for QC purposes, default is 'DAPI'
--resolution
RESOLUTION
Image resolution in microns/px for density calculation (default is 0.65
micron/px)
--leidenRange
LEIDENRANGE [LEIDENRANGE ...]
list of resolutions to test (default is just [0.5,0.6])
--radius
RADIUS Radius (pixels) for neighborhood search (default is 30px)
In the current working directory, sample_report.py
will produce:
- figures (dir)
- output anndata file (basename_analyzed.h5ad)
- HMTL report with selected figures (basename_report.html)
Between runs, rename or delete figures
dir