Skip to content

gogasca/ml-on-gcp

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

97 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Machine Learning on Google Cloud Platform

Guides to bringing your code from various Machine Learning frameworks to Google Cloud Platform.

The goal is to present recipes and practices that will help you spend less time wrangling with the various interfaces and more time exploring your datasets, building your models, and in general solving the problems you really care about.


Blog posts

  1. Genomic ancestry inference with deep learning - Ancestry inference on Google Cloud Platform using the 1000 Genomes dataset

TensorFlow

  1. Estimators - A guide to the Estimator interface.

scikit-learn

  1. scikit-learn on GCE - Train a simple model with scikit-learn on a Google Compute Engine

  2. Model serve - Serve model with Google App Engine and Cloud Endpoints.

  3. Hyperparameter search - Hyperparameter search on a Google Kubernetes Engine cluster from a Jupyter notebook.


Google Compute Engine

  1. Compute Engine survival training - Introduces a framework for running resilient training jobs on Google Compute Engine.

  2. Compute Engine burst training - A guide to using powerful VMs to quickly and cheaply perform computationally intensive training jobs. (The example training job in this guide uses xgboost as well as scikit-learn.)

About

Machine Learning on Google Cloud Platform

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 59.8%
  • Python 31.5%
  • Shell 8.5%
  • Dockerfile 0.2%