Skip to content

Commit

Permalink
re-export n_choose_k
Browse files Browse the repository at this point in the history
  • Loading branch information
Mizux committed Dec 9, 2024
1 parent afe7980 commit 0bf166c
Show file tree
Hide file tree
Showing 4 changed files with 560 additions and 0 deletions.
34 changes: 34 additions & 0 deletions ortools/algorithms/BUILD.bazel
Original file line number Diff line number Diff line change
Expand Up @@ -534,3 +534,37 @@ cc_test(
"//ortools/base:gmock_main",
],
)

cc_library(
name = "n_choose_k",
srcs = ["n_choose_k.cc"],
hdrs = ["n_choose_k.h"],
deps = [
":binary_search",
"//ortools/base:mathutil",
"@com_google_absl//absl/log",
"@com_google_absl//absl/log:check",
"@com_google_absl//absl/numeric:int128",
"@com_google_absl//absl/status",
"@com_google_absl//absl/status:statusor",
"@com_google_absl//absl/strings:str_format",
"@com_google_absl//absl/time",
],
)

cc_test(
name = "n_choose_k_test",
srcs = ["n_choose_k_test.cc"],
deps = [
":n_choose_k",
"//ortools/base:dump_vars",
"//ortools/base:gmock_main",
"//ortools/base:mathutil",
"//ortools/util:flat_matrix",
"@com_google_absl//absl/numeric:int128",
"@com_google_absl//absl/random",
"@com_google_absl//absl/random:distributions",
"@com_google_absl//absl/status",
"@com_google_absl//absl/status:statusor",
],
)
169 changes: 169 additions & 0 deletions ortools/algorithms/n_choose_k.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,169 @@
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "ortools/algorithms/n_choose_k.h"

#include <cmath>
#include <cstdint>
#include <limits>
#include <vector>

#include "absl/log/check.h"
#include "absl/numeric/int128.h"
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "absl/strings/str_format.h"
#include "absl/time/clock.h"
#include "absl/time/time.h"
#include "ortools/algorithms/binary_search.h"
#include "ortools/base/logging.h"
#include "ortools/base/mathutil.h"

namespace operations_research {
namespace {
// This is the actual computation. It's in O(k).
template <typename Int>
Int InternalChoose(Int n, Int k) {
DCHECK_LE(k, n - k);
DCHECK_GT(k, 0); // Having k>0 lets us start with i=2 (small optimization).
// We compute n * (n-1) * ... * (n-k+1) / k! in the best possible order to
// guarantee exact results, while trying to avoid overflows. It's not
// perfect: we finish with a division by k, which means that me may overflow
// even if the result doesn't (by a factor of up to k).
Int result = n;
for (Int i = 2; i <= k; ++i) {
result *= n + 1 - i;
result /= i; // The product of i consecutive numbers is divisible by i!.
}
return result;
}

// This function precomputes the maximum N such that (N choose K) doesn't
// overflow, for all K.
// When `overflows_intermediate_computation` is true, "overflow" means
// "some overflow happens inside InternalChoose<int64_t>()", and when it's false
// it simply means "the result doesn't fit in an int64_t".
// This is only used in contexts where K ≤ N-K, which implies N ≥ 2K, thus we
// can stop when (2K Choose K) overflows, because at and beyond such K,
// (N Choose K) will always overflow. In practice that happens for K=31 or 34
// depending on `overflows_intermediate_computation`.
template <class Int>
std::vector<Int> LastNThatDoesNotOverflowForAllK(
bool overflows_intermediate_computation) {
absl::Time start_time = absl::Now();
// Given the algorithm used in InternalChoose(), it's not hard to
// find out when (N choose K) overflows an int64_t during its internal
// computation: that's when (N choose K) > MAX_INT / k.

// For K ≤ 2, we hardcode the values of the maximum N. That's because
// the binary search done below uses MathUtil::LogCombinations, which only
// works on int32_t, and that's problematic for the max N we get for K=2.
//
// For K=2, we want N(N-1) ≤ 2^num_digits, or N(N-1)/2 ≤ 2^num_digits if
// !overflows_intermediate_computation, i.e. N(N-1) ≤ 2^(num_digits+1).
// Then, when d is even, N(N-1) ≤ 2^d ⇔ N ≤ 2^(d/2), which is simple.
// When d is odd, it's harder: N(N-1)≈(N-0.5)² and thus we get the bound
// N ≤ pow(2.0, d/2)+0.5.
const int bound_digits = std::numeric_limits<Int>::digits +
(overflows_intermediate_computation ? 0 : 1);
std::vector<Int> result = {
std::numeric_limits<Int>::max(), // K=0
std::numeric_limits<Int>::max(), // K=1
bound_digits % 2 == 0
? Int{1} << (bound_digits / 2)
: static_cast<Int>(
0.5 + std::pow(2.0, 0.5 * std::numeric_limits<Int>::digits)),
};
// We find the last N with binary search, for all K. We stop growing K
// when (2*K Choose K) overflows.
for (Int k = 3;; ++k) {
const double max_log_comb =
overflows_intermediate_computation
? std::numeric_limits<Int>::digits * std::log(2) - std::log(k)
: std::numeric_limits<Int>::digits * std::log(2);
result.push_back(BinarySearch<Int>(
/*x_true*/ k,
// x_false=X, X needs to be large enough so that X choose 3 overflows:
// (X choose 3)≈(X-1)³/6, so we pick X = 2+6*2^(num_digits/3+1).
/*x_false=*/
(static_cast<Int>(
2 + 6 * std::pow(2.0, std::numeric_limits<Int>::digits / 3 + 1))),
[k, max_log_comb](Int n) {
return MathUtil::LogCombinations(n, k) <= max_log_comb;
}));
if (result.back() < 2 * k) {
result.pop_back();
break;
}
}
// Some DCHECKs for int64_t, which should validate the general formulaes.
if constexpr (std::numeric_limits<Int>::digits == 63) {
DCHECK_EQ(result.size(),
overflows_intermediate_computation
? 31 // 60 Choose 30 < 2^63/30 but 62 Choose 31 > 2^63/31.
: 34); // 66 Choose 33 < 2^63 but 68 Choose 34 > 2^63.
}
VLOG(1) << "LastNThatDoesNotOverflowForAllK(): " << absl::Now() - start_time;
return result;
}

template <typename Int>
bool NChooseKIntermediateComputationOverflowsInt(Int n, Int k) {
DCHECK_LE(k, n - k);
static const auto* const result =
new std::vector<Int>(LastNThatDoesNotOverflowForAllK<Int>(
/*overflows_intermediate_computation=*/true));
return k < result->size() ? n > (*result)[k] : true;
}

template <typename Int>
bool NChooseKResultOverflowsInt(Int n, Int k) {
DCHECK_LE(k, n - k);
static const auto* const result =
new std::vector<Int>(LastNThatDoesNotOverflowForAllK<Int>(
/*overflows_intermediate_computation=*/false));
return k < result->size() ? n > (*result)[k] : true;
}
} // namespace

// NOTE(user): If performance ever matters, we could simply precompute and
// store all (N choose K) that don't overflow, there aren't that many of them:
// only a few tens of thousands, after removing simple cases like k ≤ 5.
absl::StatusOr<int64_t> NChooseK(int64_t n, int64_t k) {
if (n < 0) {
return absl::InvalidArgumentError(absl::StrFormat("n is negative (%d)", n));
}
if (k < 0) {
return absl::InvalidArgumentError(absl::StrFormat("k is negative (%d)", k));
}
if (k > n) {
return absl::InvalidArgumentError(
absl::StrFormat("k=%d is greater than n=%d", k, n));
}
if (k > n / 2) k = n - k;
if (k == 0) return 1;
if (n < std::numeric_limits<uint32_t>::max() &&
!NChooseKIntermediateComputationOverflowsInt<uint32_t>(n, k)) {
return static_cast<int64_t>(InternalChoose<uint32_t>(n, k));
}
if (!NChooseKIntermediateComputationOverflowsInt<int64_t>(n, k)) {
return InternalChoose<uint64_t>(n, k);
}
if (NChooseKResultOverflowsInt<int64_t>(n, k)) {
return absl::InvalidArgumentError(
absl::StrFormat("(%d choose %d) overflows int64", n, k));
}
return static_cast<int64_t>(InternalChoose<absl::uint128>(n, k));
}

} // namespace operations_research
34 changes: 34 additions & 0 deletions ortools/algorithms/n_choose_k.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef OR_TOOLS_ALGORITHMS_N_CHOOSE_K_H_
#define OR_TOOLS_ALGORITHMS_N_CHOOSE_K_H_

#include <cstdint>

#include "absl/status/statusor.h"

namespace operations_research {
// Returns the number of ways to choose k elements among n, ignoring the order,
// i.e., the binomial coefficient (n, k).
// This is like std::exp(MathUtil::LogCombinations(n, k)), but faster, with
// perfect accuracy, and returning an error iff the result would overflow an
// int64_t or if an argument is invalid (i.e., n < 0, k < 0, or k > n).
//
// NOTE(user): If you need a variation of this, ask the authors: it's very easy
// to add. E.g., other int types, other behaviors (e.g., return 0 if k > n, or
// std::numeric_limits<int64_t>::max() on overflow, etc).
absl::StatusOr<int64_t> NChooseK(int64_t n, int64_t k);
} // namespace operations_research

#endif // OR_TOOLS_ALGORITHMS_N_CHOOSE_K_H_
Loading

0 comments on commit 0bf166c

Please sign in to comment.