Skip to content

Commit

Permalink
feat(bigquery): update the API
Browse files Browse the repository at this point in the history
#### bigquery:v2

The following keys were added:
- schemas.ArimaForecastingMetrics.properties.arimaFittingMetrics.deprecated
- schemas.ArimaForecastingMetrics.properties.hasDrift.deprecated
- schemas.ArimaForecastingMetrics.properties.nonSeasonalOrder.deprecated
- schemas.ArimaForecastingMetrics.properties.seasonalPeriods.deprecated
- schemas.ArimaForecastingMetrics.properties.timeSeriesId.deprecated
- schemas.Model.properties.bestTrialId.deprecated
- schemas.TrainingOptions.properties.activationFn.description
- schemas.TrainingOptions.properties.activationFn.type
- schemas.TrainingOptions.properties.autoClassWeights.description
- schemas.TrainingOptions.properties.autoClassWeights.type
- schemas.TrainingOptions.properties.budgetHours.description
- schemas.TrainingOptions.properties.budgetHours.format
- schemas.TrainingOptions.properties.budgetHours.type
- schemas.TrainingOptions.properties.fitIntercept.description
- schemas.TrainingOptions.properties.fitIntercept.type
- schemas.TrainingOptions.properties.l1RegActivation.description
- schemas.TrainingOptions.properties.l1RegActivation.format
- schemas.TrainingOptions.properties.l1RegActivation.type
- schemas.TrainingOptions.properties.modelRegistry.description
- schemas.TrainingOptions.properties.modelRegistry.enum
- schemas.TrainingOptions.properties.modelRegistry.enumDescriptions
- schemas.TrainingOptions.properties.modelRegistry.type
- schemas.TrainingOptions.properties.numPrincipalComponents.description
- schemas.TrainingOptions.properties.numPrincipalComponents.format
- schemas.TrainingOptions.properties.numPrincipalComponents.type
- schemas.TrainingOptions.properties.optimizer.description
- schemas.TrainingOptions.properties.optimizer.type
- schemas.TrainingOptions.properties.pcaExplainedVarianceRatio.description
- schemas.TrainingOptions.properties.pcaExplainedVarianceRatio.format
- schemas.TrainingOptions.properties.pcaExplainedVarianceRatio.type
- schemas.TrainingOptions.properties.pcaSolver.description
- schemas.TrainingOptions.properties.pcaSolver.enum
- schemas.TrainingOptions.properties.pcaSolver.enumDescriptions
- schemas.TrainingOptions.properties.pcaSolver.type
- schemas.TrainingOptions.properties.scaleFeatures.description
- schemas.TrainingOptions.properties.scaleFeatures.type
- schemas.TrainingOptions.properties.standardizeFeatures.description
- schemas.TrainingOptions.properties.standardizeFeatures.type
- schemas.TrainingOptions.properties.vertexAiModelVersionAliases.description
- schemas.TrainingOptions.properties.vertexAiModelVersionAliases.items.type
- schemas.TrainingOptions.properties.vertexAiModelVersionAliases.type
- schemas.TrainingRun.properties.trainingStartTime.deprecated

The following keys were changed:
- schemas.Model.properties.featureColumns.description
  • Loading branch information
yoshi-automation authored and sofisl committed Jul 13, 2023
1 parent 62fca56 commit c6dd02d
Show file tree
Hide file tree
Showing 2 changed files with 141 additions and 3 deletions.
90 changes: 88 additions & 2 deletions discovery/bigquery-v2.json
Original file line number Diff line number Diff line change
Expand Up @@ -1710,7 +1710,7 @@
}
}
},
"revision": "20230624",
"revision": "20230708",
"rootUrl": "https://bigquery.googleapis.com/",
"schemas": {
"AggregateClassificationMetrics": {
Expand Down Expand Up @@ -1855,6 +1855,7 @@
"id": "ArimaForecastingMetrics",
"properties": {
"arimaFittingMetrics": {
"deprecated": true,
"description": "Arima model fitting metrics.",
"items": {
"$ref": "ArimaFittingMetrics"
Expand All @@ -1869,20 +1870,23 @@
"type": "array"
},
"hasDrift": {
"deprecated": true,
"description": "Whether Arima model fitted with drift or not. It is always false when d is not 1.",
"items": {
"type": "boolean"
},
"type": "array"
},
"nonSeasonalOrder": {
"deprecated": true,
"description": "Non-seasonal order.",
"items": {
"$ref": "ArimaOrder"
},
"type": "array"
},
"seasonalPeriods": {
"deprecated": true,
"description": "Seasonal periods. Repeated because multiple periods are supported for one time series.",
"items": {
"enum": [
Expand All @@ -1908,6 +1912,7 @@
"type": "array"
},
"timeSeriesId": {
"deprecated": true,
"description": "Id to differentiate different time series for the large-scale case.",
"items": {
"type": "string"
Expand Down Expand Up @@ -5057,6 +5062,7 @@
"id": "Model",
"properties": {
"bestTrialId": {
"deprecated": true,
"description": "The best trial_id across all training runs.",
"format": "int64",
"type": "string"
Expand Down Expand Up @@ -5092,7 +5098,7 @@
"type": "string"
},
"featureColumns": {
"description": "Output only. Input feature columns that were used to train this model.",
"description": "Output only. Input feature columns for the model inference. If the model is trained with TRANSFORM clause, these are the input of the TRANSFORM clause.",
"items": {
"$ref": "StandardSqlField"
},
Expand Down Expand Up @@ -7084,6 +7090,10 @@
"description": "Options used in model training.",
"id": "TrainingOptions",
"properties": {
"activationFn": {
"description": "Activation function of the neural nets.",
"type": "string"
},
"adjustStepChanges": {
"description": "If true, detect step changes and make data adjustment in the input time series.",
"type": "boolean"
Expand All @@ -7106,6 +7116,10 @@
"format": "int64",
"type": "string"
},
"autoClassWeights": {
"description": "Whether to calculate class weights automatically based on the popularity of each label.",
"type": "boolean"
},
"batchSize": {
"description": "Batch size for dnn models.",
"format": "int64",
Expand All @@ -7125,6 +7139,11 @@
],
"type": "string"
},
"budgetHours": {
"description": "Budget in hours for AutoML training.",
"format": "double",
"type": "number"
},
"calculatePValues": {
"description": "Whether or not p-value test should be computed for this model. Only available for linear and logistic regression models.",
"type": "boolean"
Expand Down Expand Up @@ -7282,6 +7301,10 @@
],
"type": "string"
},
"fitIntercept": {
"description": "Whether the model should include intercept during model training.",
"type": "boolean"
},
"hiddenUnits": {
"description": "Hidden units for dnn models.",
"items": {
Expand Down Expand Up @@ -7535,6 +7558,11 @@
],
"type": "string"
},
"l1RegActivation": {
"description": "L1 regularization coefficient to activations.",
"format": "double",
"type": "number"
},
"l1Regularization": {
"description": "L1 regularization coefficient.",
"format": "double",
Expand Down Expand Up @@ -7626,6 +7654,18 @@
"format": "int64",
"type": "string"
},
"modelRegistry": {
"description": "The model registry.",
"enum": [
"MODEL_REGISTRY_UNSPECIFIED",
"VERTEX_AI"
],
"enumDescriptions": [
"",
"Vertex AI."
],
"type": "string"
},
"modelUri": {
"description": "Google Cloud Storage URI from which the model was imported. Only applicable for imported models.",
"type": "string"
Expand All @@ -7649,6 +7689,11 @@
"format": "int64",
"type": "string"
},
"numPrincipalComponents": {
"description": "Number of principal components to keep in the PCA model. Must be <= the number of features.",
"format": "int64",
"type": "string"
},
"numTrials": {
"description": "Number of trials to run this hyperparameter tuning job.",
"format": "int64",
Expand All @@ -7668,11 +7713,44 @@
],
"type": "string"
},
"optimizer": {
"description": "Optimizer used for training the neural nets.",
"type": "string"
},
"pcaExplainedVarianceRatio": {
"description": "The minimum ratio of cumulative explained variance that needs to be given by the PCA model.",
"format": "double",
"type": "number"
},
"pcaSolver": {
"description": "The solver for PCA.",
"enum": [
"UNSPECIFIED",
"FULL",
"RANDOMIZED",
"AUTO"
],
"enumDescriptions": [
"",
"Full eigen-decoposition.",
"Randomized SVD.",
"Auto."
],
"type": "string"
},
"sampledShapleyNumPaths": {
"description": "Number of paths for the sampled Shapley explain method.",
"format": "int64",
"type": "string"
},
"scaleFeatures": {
"description": "If true, scale the feature values by dividing the feature standard deviation. Currently only apply to PCA.",
"type": "boolean"
},
"standardizeFeatures": {
"description": "Whether to standardize numerical features. Default to true.",
"type": "boolean"
},
"subsample": {
"description": "Subsample fraction of the training data to grow tree to prevent overfitting for boosted tree models.",
"format": "double",
Expand Down Expand Up @@ -7733,6 +7811,13 @@
"description": "User column specified for matrix factorization models.",
"type": "string"
},
"vertexAiModelVersionAliases": {
"description": "The version aliases to apply in Vertex AI model registry. Always overwrite if the version aliases exists in a existing model.",
"items": {
"type": "string"
},
"type": "array"
},
"walsAlpha": {
"description": "Hyperparameter for matrix factoration when implicit feedback type is specified.",
"format": "double",
Expand Down Expand Up @@ -7796,6 +7881,7 @@
"readOnly": true
},
"trainingStartTime": {
"deprecated": true,
"description": "Output only. The start time of this training run, in milliseconds since epoch.",
"format": "int64",
"readOnly": true,
Expand Down
54 changes: 53 additions & 1 deletion src/apis/bigquery/v2.ts
Original file line number Diff line number Diff line change
Expand Up @@ -2509,7 +2509,7 @@ export namespace bigquery_v2 {
*/
expirationTime?: string | null;
/**
* Output only. Input feature columns that were used to train this model.
* Output only. Input feature columns for the model inference. If the model is trained with TRANSFORM clause, these are the input of the TRANSFORM clause.
*/
featureColumns?: Schema$StandardSqlField[];
/**
Expand Down Expand Up @@ -3741,6 +3741,10 @@ export namespace bigquery_v2 {
* Options used in model training.
*/
export interface Schema$TrainingOptions {
/**
* Activation function of the neural nets.
*/
activationFn?: string | null;
/**
* If true, detect step changes and make data adjustment in the input time series.
*/
Expand All @@ -3761,6 +3765,10 @@ export namespace bigquery_v2 {
* The min value of the sum of non-seasonal p and q.
*/
autoArimaMinOrder?: string | null;
/**
* Whether to calculate class weights automatically based on the popularity of each label.
*/
autoClassWeights?: boolean | null;
/**
* Batch size for dnn models.
*/
Expand All @@ -3769,6 +3777,10 @@ export namespace bigquery_v2 {
* Booster type for boosted tree models.
*/
boosterType?: string | null;
/**
* Budget in hours for AutoML training.
*/
budgetHours?: number | null;
/**
* Whether or not p-value test should be computed for this model. Only available for linear and logistic regression models.
*/
Expand Down Expand Up @@ -3837,6 +3849,10 @@ export namespace bigquery_v2 {
* Feedback type that specifies which algorithm to run for matrix factorization.
*/
feedbackType?: string | null;
/**
* Whether the model should include intercept during model training.
*/
fitIntercept?: boolean | null;
/**
* Hidden units for dnn models.
*/
Expand Down Expand Up @@ -3885,6 +3901,10 @@ export namespace bigquery_v2 {
* The method used to initialize the centroids for kmeans algorithm.
*/
kmeansInitializationMethod?: string | null;
/**
* L1 regularization coefficient to activations.
*/
l1RegActivation?: number | null;
/**
* L1 regularization coefficient.
*/
Expand Down Expand Up @@ -3941,6 +3961,10 @@ export namespace bigquery_v2 {
* Minimum sum of instance weight needed in a child for boosted tree models.
*/
minTreeChildWeight?: string | null;
/**
* The model registry.
*/
modelRegistry?: string | null;
/**
* Google Cloud Storage URI from which the model was imported. Only applicable for imported models.
*/
Expand All @@ -3961,6 +3985,10 @@ export namespace bigquery_v2 {
* Number of parallel trees constructed during each iteration for boosted tree models.
*/
numParallelTree?: string | null;
/**
* Number of principal components to keep in the PCA model. Must be <= the number of features.
*/
numPrincipalComponents?: string | null;
/**
* Number of trials to run this hyperparameter tuning job.
*/
Expand All @@ -3969,10 +3997,30 @@ export namespace bigquery_v2 {
* Optimization strategy for training linear regression models.
*/
optimizationStrategy?: string | null;
/**
* Optimizer used for training the neural nets.
*/
optimizer?: string | null;
/**
* The minimum ratio of cumulative explained variance that needs to be given by the PCA model.
*/
pcaExplainedVarianceRatio?: number | null;
/**
* The solver for PCA.
*/
pcaSolver?: string | null;
/**
* Number of paths for the sampled Shapley explain method.
*/
sampledShapleyNumPaths?: string | null;
/**
* If true, scale the feature values by dividing the feature standard deviation. Currently only apply to PCA.
*/
scaleFeatures?: boolean | null;
/**
* Whether to standardize numerical features. Default to true.
*/
standardizeFeatures?: boolean | null;
/**
* Subsample fraction of the training data to grow tree to prevent overfitting for boosted tree models.
*/
Expand Down Expand Up @@ -4013,6 +4061,10 @@ export namespace bigquery_v2 {
* User column specified for matrix factorization models.
*/
userColumn?: string | null;
/**
* The version aliases to apply in Vertex AI model registry. Always overwrite if the version aliases exists in a existing model.
*/
vertexAiModelVersionAliases?: string[] | null;
/**
* Hyperparameter for matrix factoration when implicit feedback type is specified.
*/
Expand Down

0 comments on commit c6dd02d

Please sign in to comment.