Model
model = Sequential([
Conv2D(32, (5, 5), activation='relu', input_shape=(28, 28, 1)),
MaxPooling2D(pool_size=(3, 3)),
Conv2D(32, (3, 3), activation='relu'),
MaxPooling2D(pool_size=(2, 2)),
Flatten(),
Dense(48, activation='relu'),
Dense(10, activation='softmax'),
])
MNIST test data set - 0.9866
accuracy
My own digits data set - 0.9615
accuracy
Without augmentation (train-pure.py) I get higher accuracy 0.99
++ on mnist dataset, but it fails miserably on my own data set.