Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add power transformation logic to forecaster transforms #185

Merged
merged 34 commits into from
Dec 11, 2024
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
Show all changes
34 commits
Select commit Hold shift + click to select a range
4b0d100
add transformation crate and boxcox
edwardcqian Dec 5, 2024
0bcedb4
move power transform logic to forecasting and make transform pub
edwardcqian Dec 5, 2024
4408e2d
formatting update
edwardcqian Dec 5, 2024
834cf61
assert that box cox is strictly positive
edwardcqian Dec 5, 2024
a6e8d56
order dependencies
edwardcqian Dec 6, 2024
6ae5e95
check that data is not empty in boxcoxllf
edwardcqian Dec 6, 2024
d922b47
handle error in optimize lambda
edwardcqian Dec 6, 2024
8a61a50
specify lambda in BoxCox
edwardcqian Dec 6, 2024
4e43431
panic -> assert
edwardcqian Dec 6, 2024
5f7f8cc
add power transformation
edwardcqian Dec 6, 2024
c89d42e
change box cox problem from vec tor array
edwardcqian Dec 6, 2024
efc36c1
change visibilities
edwardcqian Dec 6, 2024
c3a908d
boxcox -> box_cox
edwardcqian Dec 6, 2024
ebfd3c7
fix format and naming
edwardcqian Dec 6, 2024
8d4d2d7
update tests
edwardcqian Dec 9, 2024
214bee9
update scope
edwardcqian Dec 9, 2024
3d5ea97
update optimize_lambda to handle errors
edwardcqian Dec 9, 2024
f5fa4c9
panic if no optimal lambda found
edwardcqian Dec 9, 2024
4460c58
add test for power transformation
edwardcqian Dec 9, 2024
0d92206
assert -> error for box_cox
edwardcqian Dec 9, 2024
b164377
Merge remote-tracking branch 'origin/main' into add-transformation-cr…
edwardcqian Dec 9, 2024
7f4a719
added yeo_johnson transformation + corresponding power logic
edwardcqian Dec 9, 2024
eeecd63
linting fix
edwardcqian Dec 9, 2024
f8ae9b0
linting updare
edwardcqian Dec 9, 2024
2d7c724
fmt update
edwardcqian Dec 9, 2024
434ab52
complete comment for power_transform
edwardcqian Dec 10, 2024
75bf73a
revert scope changes
edwardcqian Dec 10, 2024
934e431
remove duplicated logic
edwardcqian Dec 10, 2024
6e82356
fix yeo johnson implementation and add tests
edwardcqian Dec 10, 2024
0a8ff4e
use explicit import instead of *
edwardcqian Dec 10, 2024
6b7644c
change power_transform to return error
edwardcqian Dec 10, 2024
575242d
extract default parameters
edwardcqian Dec 10, 2024
2e431ae
error checking for inverse box cox
edwardcqian Dec 10, 2024
c1c9303
Reformat doc comments for some methods
sd2k Dec 11, 2024
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion crates/augurs-forecaster/Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -16,9 +16,10 @@ bench = false
augurs-core.workspace = true
itertools.workspace = true
thiserror.workspace = true
argmin = "0.10.0"
sd2k marked this conversation as resolved.
Show resolved Hide resolved

[dev-dependencies]
augurs.workspace = true
augurs = { workspace = true, features = ["mstl", "ets", "forecaster"]}
augurs-testing.workspace = true

[lints]
Expand Down
4 changes: 3 additions & 1 deletion crates/augurs-forecaster/src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -3,12 +3,14 @@
mod data;
mod error;
mod forecaster;
mod power_transforms;
pub mod transforms;

pub use data::Data;
pub use error::Error;
pub use forecaster::Forecaster;
pub use power_transforms::optimize_lambda;
pub use transforms::Transform;
pub(crate) use transforms::Transforms;
pub use transforms::Transforms;

type Result<T> = std::result::Result<T, Error>;
70 changes: 70 additions & 0 deletions crates/augurs-forecaster/src/power_transforms.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
use crate::transforms::box_cox;
use argmin::core::*;
use argmin::solver::brent::BrentOpt;

fn box_cox_log_likelihood(data: &[f64], lambda: f64) -> f64 {
let n = data.len() as f64;
let transformed_data: Vec<f64> = data.iter().map(|&x| box_cox(x, lambda)).collect();
let mean_transformed: f64 = transformed_data.iter().copied().sum::<f64>() / n;
let variance: f64 = transformed_data
.iter()
.map(|&x| (x - mean_transformed).powi(2))
.sum::<f64>()
/ n;
edwardcqian marked this conversation as resolved.
Show resolved Hide resolved

// Avoid log(0) by ensuring variance is positive
let log_likelihood =
-0.5 * n * variance.ln() + (lambda - 1.0) * data.iter().map(|&x| x.ln()).sum::<f64>();
sd2k marked this conversation as resolved.
Show resolved Hide resolved
log_likelihood
}

#[derive(Clone)]
struct BoxCoxProblem {
data: Vec<f64>,
sd2k marked this conversation as resolved.
Show resolved Hide resolved
}

impl CostFunction for BoxCoxProblem {
type Param = f64;
type Output = f64;

// The goal is to minimize the negative log-likelihood
fn cost(&self, lambda: &Self::Param) -> Result<Self::Output, Error> {
Ok(-box_cox_log_likelihood(&self.data, *lambda))
}
}

/// Optimize the lambda parameter for the Box-Cox transformation
pub fn optimize_lambda(data: &[f64]) -> f64 {
let cost = BoxCoxProblem {
data: data.to_vec(),
};
let init_param = 0.5;
let solver = BrentOpt::new(-2.0, 2.0);
sd2k marked this conversation as resolved.
Show resolved Hide resolved

let res = Executor::new(cost, solver)
.configure(|state| state.param(init_param).max_iters(100))
.run()
.unwrap();
res.state.best_param.unwrap()
}
sd2k marked this conversation as resolved.
Show resolved Hide resolved

#[cfg(test)]
mod test {
use super::*;
use augurs_testing::assert_approx_eq;

#[test]
fn correct_optimal_lambda() {
let data = &[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7];
let got = optimize_lambda(data);
assert_approx_eq!(got, 0.7123778635679304);
}

#[test]
fn test_boxcox_llf() {
let data = &[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7];
let lambda = 1.0;
let got = box_cox_log_likelihood(data, lambda);
assert_approx_eq!(got, 11.266065387038703);
}
}
134 changes: 127 additions & 7 deletions crates/augurs-forecaster/src/transforms.rs
Original file line number Diff line number Diff line change
Expand Up @@ -7,15 +7,21 @@ use augurs_core::{
Forecast,
};

/// Transforms and Transform implementations.
///
/// The `Transforms` struct is a collection of `Transform` instances that can be applied to a time series.
/// The `Transform` enum represents a single transformation that can be applied to a time series.
#[derive(Debug, Default)]
pub(crate) struct Transforms(Vec<Transform>);
pub struct Transforms(Vec<Transform>);
sd2k marked this conversation as resolved.
Show resolved Hide resolved
edwardcqian marked this conversation as resolved.
Show resolved Hide resolved

impl Transforms {
pub(crate) fn new(transforms: Vec<Transform>) -> Self {
/// create a new `Transforms` instance with the given transforms.
pub fn new(transforms: Vec<Transform>) -> Self {
Self(transforms)
}

pub(crate) fn transform<'a, T>(&'a self, input: T) -> Box<dyn Iterator<Item = f64> + 'a>
/// Apply the transformations to the given time series.
pub fn transform<'a, T>(&'a self, input: T) -> Box<dyn Iterator<Item = f64> + 'a>
where
T: Iterator<Item = f64> + 'a,
{
Expand All @@ -24,7 +30,8 @@ impl Transforms {
.fold(Box::new(input) as _, |y, t| t.transform(y))
}

pub(crate) fn inverse_transform(&self, forecast: Forecast) -> Forecast {
/// Apply the inverse transformations to the given forecast.
pub fn inverse_transform(&self, forecast: Forecast) -> Forecast {
self.0
.iter()
.rev()
Expand All @@ -46,6 +53,8 @@ pub enum Transform {
Logit,
/// Log transform.
Log,
/// Box-Cox transform.
BoxCox(f64),
sd2k marked this conversation as resolved.
Show resolved Hide resolved
}

impl Transform {
Expand Down Expand Up @@ -81,7 +90,15 @@ impl Transform {
Self::Log
}

pub(crate) fn transform<'a, T>(&'a self, input: T) -> Box<dyn Iterator<Item = f64> + 'a>
/// Create a new Box-Cox transform.
///
/// This transform applies the Box-Cox transformation to each item.
pub fn boxcox(lambda: f64) -> Self {
edwardcqian marked this conversation as resolved.
Show resolved Hide resolved
Self::BoxCox(lambda)
}

/// Apply the transformation to the given time series.
pub fn transform<'a, T>(&'a self, input: T) -> Box<dyn Iterator<Item = f64> + 'a>
sd2k marked this conversation as resolved.
Show resolved Hide resolved
where
T: Iterator<Item = f64> + 'a,
{
Expand All @@ -90,10 +107,12 @@ impl Transform {
Self::MinMaxScaler(params) => Box::new(input.min_max_scale(params.clone())),
Self::Logit => Box::new(input.logit()),
Self::Log => Box::new(input.log()),
Self::BoxCox(lambda) => Box::new(input.boxcox(*lambda)),
}
}

pub(crate) fn inverse_transform<'a, T>(&'a self, input: T) -> Box<dyn Iterator<Item = f64> + 'a>
/// Apply the inverse transformation to the given time series.
pub fn inverse_transform<'a, T>(&'a self, input: T) -> Box<dyn Iterator<Item = f64> + 'a>
sd2k marked this conversation as resolved.
Show resolved Hide resolved
where
T: Iterator<Item = f64> + 'a,
{
Expand All @@ -102,10 +121,12 @@ impl Transform {
Self::MinMaxScaler(params) => Box::new(input.inverse_min_max_scale(params.clone())),
Self::Logit => Box::new(input.logistic()),
Self::Log => Box::new(input.exp()),
Self::BoxCox(lambda) => Box::new(input.inverse_boxcox(*lambda)),
}
}

pub(crate) fn inverse_transform_forecast(&self, mut f: Forecast) -> Forecast {
/// Apply the inverse transformations to the given forecast.
pub fn inverse_transform_forecast(&self, mut f: Forecast) -> Forecast {
f.point = self.inverse_transform(f.point.into_iter()).collect();
if let Some(mut intervals) = f.intervals.take() {
intervals.lower = self
Expand Down Expand Up @@ -371,6 +392,87 @@ trait ExpExt: Iterator<Item = f64> {

impl<T> ExpExt for T where T: Iterator<Item = f64> {}

/// Returns the Box-Cox transformation of the given value.
/// Assumes x > 0.
pub fn box_cox(x: f64, lambda: f64) -> f64 {
if lambda == 0.0 {
x.ln()
} else {
(x.powf(lambda) - 1.0) / lambda
}
}
edwardcqian marked this conversation as resolved.
Show resolved Hide resolved

/// An iterator adapter that applies the Box-Cox transformation to each item.
#[derive(Clone, Debug)]
struct BoxCox<T> {
inner: T,
lambda: f64,
}

impl<T> Iterator for BoxCox<T>
where
T: Iterator<Item = f64>,
{
type Item = f64;
fn next(&mut self) -> Option<Self::Item> {
self.inner.next().map(|x| box_cox(x, self.lambda))
}
}

trait BoxCoxExt: Iterator<Item = f64> {
fn boxcox(self, lambda: f64) -> BoxCox<Self>
sd2k marked this conversation as resolved.
Show resolved Hide resolved
where
Self: Sized,
{
BoxCox {
inner: self,
lambda,
}
}
}

impl<T> BoxCoxExt for T where T: Iterator<Item = f64> {}

/// Returns the inverse Box-Cox transformation of the given value.
fn inverse_box_cox(y: f64, lambda: f64) -> f64 {
if lambda == 0.0 {
y.exp()
} else {
(y * lambda + 1.0).powf(1.0 / lambda)
}
}
Copy link
Contributor

@coderabbitai coderabbitai bot Dec 10, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue

Add domain validation to prevent invalid computations.

The function should validate that y * lambda + 1.0 is positive when computing the power function.

fn inverse_box_cox(y: f64, lambda: f64) -> Result<f64, &'static str> {
    if lambda == 0.0 {
        Ok(y.exp())
    } else {
        let value = y * lambda + 1.0;
        if value <= 0.0 {
            Err("Invalid domain for inverse Box-Cox transformation")
        } else {
            Ok(value.powf(1.0 / lambda))
        }
    }
}

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@edwardcqian should we be doing this? 🤔

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Seems like the humans are having a chat. I'll hop back into my burrow for now. If you need me again, just tag @coderabbitai in a new comment, and I'll come hopping out!

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Don't think we will reasonably get non-pos value here but doesn't hurt.


/// An iterator adapter that applies the inverse Box-Cox transformation to each item.
#[derive(Clone, Debug)]
struct InverseBoxCox<T> {
inner: T,
lambda: f64,
}

impl<T> Iterator for InverseBoxCox<T>
where
T: Iterator<Item = f64>,
{
type Item = f64;
fn next(&mut self) -> Option<Self::Item> {
self.inner.next().map(|y| inverse_box_cox(y, self.lambda))
}
}

trait InverseBoxCoxExt: Iterator<Item = f64> {
fn inverse_boxcox(self, lambda: f64) -> InverseBoxCox<Self>
sd2k marked this conversation as resolved.
Show resolved Hide resolved
where
Self: Sized,
{
InverseBoxCox {
inner: self,
lambda,
}
}
}

impl<T> InverseBoxCoxExt for T where T: Iterator<Item = f64> {}

#[cfg(test)]
mod test {
use augurs_testing::{assert_all_close, assert_approx_eq};
Expand Down Expand Up @@ -502,4 +604,22 @@ mod test {
assert_approx_eq!(params.scaled_min, 0.0);
assert_approx_eq!(params.scaled_max, 1.0);
}

#[test]
fn boxcox_test() {
let data = vec![1.0, 2.0, 3.0];
let lambda = 0.5;
let expected = vec![0.0, 0.8284271247461903, 1.4641016151377544];
let actual: Vec<_> = data.into_iter().boxcox(lambda).collect();
assert_all_close(&expected, &actual);
}

#[test]
fn inverse_boxcox_test() {
let data = vec![0.0, 0.5_f64.ln(), 1.0_f64.ln()];
let lambda = 0.5;
let expected = vec![1.0, 0.426966072919605, 1.0];
let actual: Vec<_> = data.into_iter().inverse_boxcox(lambda).collect();
assert_all_close(&expected, &actual);
}
edwardcqian marked this conversation as resolved.
Show resolved Hide resolved
}
Loading