Skip to content

Apply meaningful keys and custom behavior to indices.

License

Notifications You must be signed in to change notification settings

grahamas/AxisIndices.jl

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AxisIndices.jl

CI stable-docs dev-docs codecov

Here are some reasons you should try AxisIndices

  • Flexible design for customizing multidimensional indexing behavior
  • It's fast. StaticRanges are used to speed up indexing ranges. If something is slow, please create a detailed issue.
  • Works with Julia's standard library (in progress). The end goal of AxisIndices is to fully integrate with the standard library wherever possible. If you can find a relevant method that isn't supported in Baseor Statistics then it's likely an oversight, so make an issue. LinearAlgebra, MappedArrays, OffsetArrays, and NamedDims also have some form of support.

Note that in the Julia REPL an AxisArray prints as follows, which may not be apparent in the online documentation. REPL AxisArray

A Simple AxisArray

The simplest form of an AxisArray just wraps a standard array.

julia> using AxisIndices

julia> x = reshape(1:8, 2, 4);

julia> ax = AxisArray(x)
2×4 AxisArray(reshape(::UnitRange{Int64}, 2, 4)
  • axes:
     1 = 1:2
     2 = 1:4
)
     1  2  3  4
  1  1  3  5  7
  2  2  4  6  8  

Simply wrapping x allows us to use functions to access its elements. When using functions as indexing arguments, the axis corresponding to each argument is ultimately filtered by the function.

julia> ax[:, >(2)]
2×2 AxisArray(::Array{Int64,2}
  • axes:
     1 = 1:2
     2 = 1:2
)
     1  2
  1  5  7
  2  6  8  

julia> ax[:, >(2)] == ax[:,filter(>(2), axes(ax, 2))] == ax[:, 3:4]
true

This can be particularly helpful when indexing arguments for large arrays would otherwise require combining two or more non-continuous sets of indices. For example, if we wanted to get every element except for those at one index along the second dimension you would need to do something like:

julia> not_index = 2;      # the index we don't want to include

julia> axis = axes(x, 2);  # the axis that we want to refer to

julia> inds_before = firstindex(axis):(not_index - 1);  # all of the indices before `not_index` 

julia> inds_after = (not_index + 1):lastindex(axis);    # all of the indices after `not_index`

julia> x[:, vcat(inds_before, inds_after)]
2×3 Array{Int64,2}:
 1  5  7
 2  6  8

Using an AxisArray, this only requires one line of code

julia> ax[:, !=(2)]
2×3 AxisArray(::Array{Int64,2}
  • axes:
     1 = 1:2
     2 = 1:3
)
     1  2  3
  1  1  5  7
  2  2  6  8  

We can using ChainedFixes to combine multiple functions.

julia> using ChainedFixes

julia> ax[:, or(<(2), >(3))]  # == ax[:, [1, 4]]
2×2 AxisArray(::Array{Int64,2}
  • axes:
     1 = 1:2
     2 = 1:2
)
     1  2
  1  1  7
  2  2  8  

julia> ax[:, and(>(1), <(4))]
2×2 AxisArray(::Array{Int64,2}
  • axes:
     1 = 1:2
     2 = 1:2
)
     1  2
  1  3  5
  2  4  6  

Although these examples are simple and could be done by hand (i.e. without producing the indices programmatically), arrays that are larger or have unknown indices are more easily managed.

An AxisArray with Keys

All arguments after the array passed to AxisArray are applied to corresponding axes. We can bind a set of keys to an axis when constructing an AxisArray by providing them in the corresponding axis argument position. Whenever altering an axis we need to provide an argument for each dimension. In the following example we pass nothing, (.1:.1:.4)s, which means the first axis won't be changed and the second axis will have (.1:.1:.4)s bound to it.

julia> import Unitful: s

julia> ax = AxisArray(x, nothing, (.1:.1:.4)s)
2×4 AxisArray(reshape(::UnitRange{Int64}, 2, 4)
  • axes:
     1 = 1:2
     2 = (0.1:0.1:0.4) s
)
     0.1 s  0.2 s  0.3 s  0.4 s
  1      1      3      5      7
  2      2      4      6      8  

We can still use functions to access these elements

julia> ax[:, <(0.3s)]
2×2 AxisArray(::Array{Int64,2}
  • axes:
     1 = 1:2
     2 = (0.1:0.1:0.2) s
)
     0.1 s  0.2 s
  1      1      3
  2      2      4  

This also allows us to use keys as indexing arguments...

julia> ax[1, 0.1s]
1

...or as intervals.

julia> ax[:, 0.1s..0.3s]
2×3 AxisArray(::Array{Int64,2}
  • axes:
     1 = 1:2
     2 = (0.1:0.1:0.3) s
)
     0.1 s  0.2 s  0.3 s
  1      1      3      5
  2      2      4      6  

Offset Indexing

Indices don't have to start at one if we don't want them to.

julia> ax = AxisArray(x, 2:3, 2:5)
2×4 AxisArray(reshape(::UnitRange{Int64}, 2, 4)
  • axes:
     1 = 2:3
     2 = 2:5
)
     2  3  4  5
  2  1  3  5  7
  3  2  4  6  8  

julia> ax[:,2]
2-element AxisArray(::Array{Int64,1}
  • axes:
     1 = 2:3
)
     1
  2  1
  3  2  

If you don't know the length of each axis beforehand you can use offset. The argument passed to offset specifies how much the standard indices should be adjusted by. To start indexing at 2 we need to offset one-based indexing by +1.

julia> ax = AxisArray(x, offset(1), offset(1))
2×4 AxisArray(reshape(::UnitRange{Int64}, 2, 4)
  • axes:
     1 = 2:3
     2 = 2:5
)
     2  3  4  5
  2  1  3  5  7
  3  2  4  6  8  

We can also center each axis.

julia> ax = AxisArray(x, center, center)
2×4 AxisArray(reshape(::UnitRange{Int64}, 2, 4)
  • axes:
     1 = -1:0
     2 = -2:1
)
      -2  -1  0  1
  -1   1   3  5  7
  0    2   4  6  8  

The default origin of each centered axis is zero, but we can choose any origin.

julia> ax = AxisArray(reshape(1:9, 3, 3), center(10), center(10))
3×3 AxisArray(reshape(::UnitRange{Int64}, 3, 3)
  • axes:
     1 = 9:11
     2 = 9:11
)
      9  10  11
  9   1   4   7
  10  2   5   8
  11  3   6   9  

Static Sizing

Sometimes we know the size of the arrays we'll be working with beforehand. This can be encoded in the axis using ArrayInterface.StaticInt.

julia> using ArrayInterface

julia> import ArrayInterface: StaticInt

julia> ax = AxisArray{Int}(
          undef,                      # initialize empty array
          StaticInt(1):StaticInt(2),  # first  axis with known size of two
          StaticInt(1):StaticInt(2)   # second axis with known size of two
       );

julia> ArrayInterface.known_length(typeof(ax)) # size is known at compile time
4

julia> ax[1:2, 1:2] .= x[1:2, 1:2];  # underlying type is mutable `Array`, so we can assign new values

julia> ax
2×2 AxisArray(::Array{Int64,2}
  • axes:
     1 = 1:2
     2 = 1:2
)
     1  2
  1  1  3
  2  2  4  

Encoding Types as Axes

If each element along a particular axis corresponds to a field of a type then we can encode that information in the axis.

julia> ax = AxisArray(reshape(1:4, 2, 2), StructAxis{Complex{Float64}}(), [:a, :b])
2×2 AxisArray(reshape(::UnitRange{Int64}, 2, 2)
  • axes:
     1 = [:re, :im]
     2 = [:a, :b]
)
       :a   :b 
  :re  1    3
  :im  2    4  

We can then create a lazy mapping of that type across views of the array.

julia> axview = struct_view(ax)
2-element AxisArray(mappedarray(Complex{Float64}, view(reshape(::UnitRange{Int64}, 2, 2), 1, :), view(reshape(::UnitRange{Int64}, 2, 2), 2, :))
  • axes:
     1 = [:a, :b]
)
      1    
  :a  1.0 + 2.0im
  :b  3.0 + 4.0im  

julia> axview[:b]
3.0 + 4.0im

Attaching Metadata

Using the Metadata package, metadata can be added to an AxisArray.

julia> using Metadata

julia> mx = attach_metadata(AxisArray(x))
2×4 attach_metadata(AxisArray(reshape(::UnitRange{Int64}, 2, 4)
  • axes:
     1 = 1:2
     2 = 1:4
), ::Dict{Symbol,Any}
  • metadata:
)
     1  2  3  4
  1  1  3  5  7
  2  2  4  6  8

julia> mx.m1 = 1;

julia> mx.m1
1

Metadata can also be attached to an axis.

julia> m = (a = 1, b = 2);

julia> ax = AxisArray(x, nothing, attach_metadata(m));

julia> metadata(ax, dim=2)
(a = 1, b = 2)

Padded Axes

We can also pad axes in various ways.

julia> x = [:a, :b, :c, :d];

julia> AxisArray(x, circular_pad(first_pad=2, last_pad=2))
8-element AxisArray(::Array{Symbol,1}
  • axes:
     1 = -1:6
)
      1
  -1   :c
  0    :d
  1    :a
  2    :b
  3    :c
  4    :d
  5    :a
  6    :b  

julia> AxisArray(x, replicate_pad(first_pad=2, last_pad=2))
8-element AxisArray(::Array{Symbol,1}
  • axes:
     1 = -1:6
)
      1
  -1   :a
  0    :a
  1    :a
  2    :b
  3    :c
  4    :d
  5    :d
  6    :d  

julia> AxisArray(x, symmetric_pad(first_pad=2, last_pad=2))
8-element AxisArray(::Array{Symbol,1}
  • axes:
     1 = -1:6
)
      1
  -1   :c
  0    :b
  1    :a
  2    :b
  3    :c
  4    :d
  5    :c
  6    :b  

julia> AxisArray(x, reflect_pad(first_pad=2, last_pad=2))
8-element AxisArray(::Array{Symbol,1}
  • axes:
     1 = -1:6
)
      1
  -1   :b
  0    :a
  1    :a
  2    :b
  3    :c
  4    :d
  5    :d
  6    :c  

julia> AxisArray(3:4, zero_pad(sym_pad=2))
6-element AxisArray(::UnitRange{Int64}
  • axes:
     1 = -1:4
)
      1
  -1  0
  0   0
  1   3
  2   4
  3   0
  4   0  

julia> AxisArray(3:4, one_pad(sym_pad=2))
6-element AxisArray(::UnitRange{Int64}
  • axes:
     1 = -1:4
)
      1
  -1  1
  0   1
  1   3
  2   4
  3   1
  4   1  

Named Axes

Names can be attached to each dimension/axis using NamedAxisArray.

julia> nax = NamedAxisArray(reshape(1:4, 2, 2), x = [:a, :b], y = ["c", "d"])
2×2 NamedDimsArray(AxisArray(reshape(::UnitRange{Int64}, 2, 2)
  • axes:
     x = [:a, :b]
     y = ["c", "d"]
))
      "c"   "d" 
  :a  1     3
  :b  2     4  

About

Apply meaningful keys and custom behavior to indices.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Julia 100.0%