Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[LeetCode] 1043. Partition Array for Maximum Sum #1043

Open
grandyang opened this issue May 30, 2019 · 0 comments
Open

[LeetCode] 1043. Partition Array for Maximum Sum #1043

grandyang opened this issue May 30, 2019 · 0 comments

Comments

@grandyang
Copy link
Owner

grandyang commented May 30, 2019

Given an integer array arr, you should partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray.

Return  the largest sum of the given array after partitioning.

Example 1:

Input: arr = [1,15,7,9,2,5,10], k = 3
Output: 84
Explanation: arr becomes [15,15,15,9,10,10,10]

Example 2:

Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4
Output: 83

Example 3:

Input: arr = [1], k = 1
Output: 1

Constraints:

  • 1 <= arr.length <= 500
  • 0 <= arr[i] <= 109
  • 1 <= k <= arr.length

这道题给了一个数组 arr,和一个正整数k,说是将数组分成若干个长度不超过k的子数组,分割后的子数组所有的数字都变成该子数组中的最大值,让求分割后的所有子数组数字之和。由于分割的子数组长度不固定,用暴力搜索的话将会有很多很多种情况,不出意外的话会超时。对于这种玩子数组,又是求极值的题,刷题老司机们应该立马就能想到用动态规划 Dynamic Programming 来做。先来定义 dp 数组,先从最简单的考虑,使用一个一维的 dp 数组,其中 dp[i] 就表示分割数组中的前i个数字组成的数组可以得到的最大的数字之和。下面来考虑状态转移方程怎么求,对于 dp[i] 来说,若把最后k个数字分割出来,那么前i个数字就被分成了两个部分,前 i-k 个数字,其数字之和可以直接由 dp[i-k] 来取得,后面的k个数字,则需要求出其中最大的数字,然后乘以k,用这两部分之和来更新 dp[i] 即可。由于题目中说了分割的长度不超过k,那么就是说小于k的也是可以的,则需要遍历 [1, k] 区间所有的长度,均进行分割。接下来看代码,建立一个大小为 n+1 的 dp 数组,然后i从1遍历到n,此时新建一个变量 curMax 记录当前的最大值,然后用j从1遍历到k,同时要保证 i-j 是大于等于0的,因为需要前半部分存在,实际上这是从第i个数字开始往前找j个数字,然后记录其中最大的数字 curMax,并且不断用 dp[i-j] + curMax * j 来更新 dp[i] 即可,参见代码如下:

class Solution {
public:
    int maxSumAfterPartitioning(vector<int>& arr, int k) {
        int n = arr.size();
        vector<int> dp(n + 1);
        for (int i = 1; i <= n; ++i) {
            int curMax = 0;
            for (int j = 1; j <= k && i - j >= 0; ++j) {
                curMax = max(curMax, arr[i - j]);
                dp[i] = max(dp[i], dp[i - j] + curMax * j);
            }
        }
        return dp[n];
    }
};

Github 同步地址:

#1043

参考资料:

https://leetcode.com/problems/partition-array-for-maximum-sum/

https://leetcode.com/problems/partition-array-for-maximum-sum/discuss/291057/Java-visualize-the-pattern

https://leetcode.com/problems/partition-array-for-maximum-sum/discuss/290863/JavaC%2B%2BPython-DP-O(K)-Space

LeetCode All in One 题目讲解汇总(持续更新中...)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant