You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Return the number of permutations of 1 to n so that prime numbers are at prime indices (1-indexed.)
(Recall that an integer is prime if and only if it is greater than 1, and cannot be written as a product of two positive integers both smaller than it.)
Since the answer may be large, return the answer modulo 10^9 + 7.
Example 1:
Input: n = 5
Output: 12
Explanation: For example [1,2,5,4,3] is a valid permutation, but [5,2,3,4,1] is not because the prime number 5 is at index 1.
class Solution {
public:
int numPrimeArrangements(int n) {
long res = 1, cnt = 1, M = 1e9 + 7;
for (int i = 3; i <= n; i += 2) {
bool pass = true;
for (int factor = 3; factor * factor <= i; factor += 2) {
if (i % factor == 0) {
pass = false;
break;
}
}
if (pass) ++cnt;
}
for (int i = 1; i <= cnt; ++i) {
res = res * i % M;
}
for (int i = 1; i <= n - cnt; ++i) {
res = res * i % M;
}
return res;
}
};
其实检测1到n中质数的个数更高效的方法是用 埃拉托斯特尼筛法 Sieve of Eratosthenes,在之前的 Count Primes 中也有讲解到。这里实际上就是快速标记所有不是质数的位置,然后剩下的就都是质数了,对于每个质数,其乘以另一个大于1的数字得到的数字肯定不是质数,只要其小于等于n,就标记为 false。其余部分跟上面的解法没有啥区别,参见代码如下:
解法二:
class Solution {
public:
int numPrimeArrangements(int n) {
long res = 1, cnt = 0, M = 1e9 + 7;
vector<bool> prime(n + 1, true);
prime[0] = false; prime[1] = false;
for (int i = 2; i * i <= n; ++i) {
if (prime[i]) {
for (int factor = 2; factor * i <= n; ++factor) {
prime[factor * i] = false;
}
}
}
for (int i = 1; i <= n; ++i) {
if (prime[i]) ++cnt;
}
for (int i = 1; i <= cnt; ++i) {
res = res * i % M;
}
for (int i = 1; i <= n - cnt; ++i) {
res = res * i % M;
}
return res;
}
};
Return the number of permutations of 1 to
n
so that prime numbers are at prime indices (1-indexed.)(Recall that an integer is prime if and only if it is greater than 1, and cannot be written as a product of two positive integers both smaller than it.)
Since the answer may be large, return the answer modulo
10^9 + 7
.Example 1:
Example 2:
Constraints:
1 <= n <= 100
这道题说是让返回数字1到n组成的全排列的个数,使得质数都出现在质数的坐标上(坐标从1开始),并且结果对一个很大的数字取余。我们对于质数应该不陌生,小学数学就学过,就是大于1且只能被1和其本身整除的数。刚拿到题时,可能会被这里的全排列,质数坐标啥的所迷惑,并且疑惑地看着其 Easy 的标签,怀疑着人生。但其实这些都是障眼法,完全可以把质数和非质数分离开来,各个排列,比如有 cnt 个质数,那么其排列的方法总数就是 cnt 的阶乘(中学学过),同理,非质数的排列方法就是 n-cnt 的阶乘,然后把二者相乘就行了。所以这道题的难点还是求1到n中所有的质数的个数,这就跟之前那道 Count Primes 一样了。这里可以挨个检查 [1, n] 中的每个数字是否是质数,其实只需要要检测 [3, n] 中的所有奇数,因为除了2以外的质数一定是奇数。判定质数的最简单直接的方法,就是查找看其是否有非1非其本身的因子,这里可以从3开始检测,只需要检测到 sqrt(i) 就行了,而且只用检测奇因子,若是质数,则 cnt 自增1。最后分别计算 cnt 和 n-cnt 的阶乘,并相乘,别忘了对超大数取余,参见代码如下:
解法一:
其实检测1到n中质数的个数更高效的方法是用 埃拉托斯特尼筛法 Sieve of Eratosthenes,在之前的 Count Primes 中也有讲解到。这里实际上就是快速标记所有不是质数的位置,然后剩下的就都是质数了,对于每个质数,其乘以另一个大于1的数字得到的数字肯定不是质数,只要其小于等于n,就标记为 false。其余部分跟上面的解法没有啥区别,参见代码如下:
解法二:
Github 同步地址:
#1175
类似题目:
Count Primes
参考资料:
https://leetcode.com/problems/prime-arrangements/
https://leetcode.com/problems/prime-arrangements/discuss/371968/Detailed-Explanation-using-Sieve
https://leetcode.com/problems/prime-arrangements/discuss/371862/JavaPython-3-two-codes-each-count-only-primes-then-compute-factorials-for-both-w-analysis.
LeetCode All in One 题目讲解汇总(持续更新中...)
The text was updated successfully, but these errors were encountered: