You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Given an array nums of size n, return the majority element.
The majority element is the element that appears more than ⌊n / 2⌋ times. You may assume that the majority element always exists in the array.
Example 1:
Input: nums = [3,2,3]
Output: 3
Example 2:
Input: nums = [2,2,1,1,1,2,2]
Output: 2
Constraints:
n == nums.length
1 <= n <= 5 * 104
-231 <= nums[i] <= 231 - 1
Follow-up: Could you solve the problem in linear time and in O(1) space?
这是到求大多数的问题,有很多种解法,其中我感觉比较好的有两种,一种是用哈希表,这种方法需要 O(n) 的时间和空间,另一种是用一种叫摩尔投票法 Moore Voting,需要 O(n) 的时间和 O(1) 的空间,比前一种方法更好。这种投票法先将第一个数字假设为过半数,然后把计数器设为1,比较下一个数和此数是否相等,若相等则计数器加一,反之减一。然后看此时计数器的值,若为零,则将下一个值设为候选过半数。以此类推直到遍历完整个数组,当前候选过半数即为该数组的过半数。不仔细弄懂摩尔投票法的精髓的话,过一阵子还是会忘记的,首先要明确的是这个叼炸天的方法是有前提的,就是数组中一定要有过半数的存在才能使用,下面来看本算法的思路,这是一种先假设候选者,然后再进行验证的算法。现将数组中的第一个数假设为过半数,然后进行统计其出现的次数,如果遇到同样的数,则计数器自增1,否则计数器自减1,如果计数器减到了0,则更换下一个数字为候选者。这是一个很巧妙的设定,也是本算法的精髓所在,为啥遇到不同的要计数器减1呢,为啥减到0了又要更换候选者呢?首先是有那个强大的前提存在,一定会有一个出现超过半数的数字存在,那么如果计数器减到0了话,说明目前不是候选者数字的个数已经跟候选者的出现个数相同了,那么这个候选者已经很 weak,不一定能出现超过半数,此时选择更换当前的候选者。那有可能你会有疑问,那万一后面又大量的出现了之前的候选者怎么办,不需要担心,如果之前的候选者在后面大量出现的话,其又会重新变为候选者,直到最终验证成为正确的过半数,佩服算法的提出者啊,代码如下:
C++ 解法一:
class Solution {
public:
int majorityElement(vector<int>& nums) {
int res = 0, cnt = 0;
for (int num : nums) {
if (cnt == 0) {res = num; ++cnt;}
else (num == res) ? ++cnt : --cnt;
}
return res;
}
};
Java 解法一:
public class Solution {
public int majorityElement(int[] nums) {
int res = 0, cnt = 0;
for (int num : nums) {
if (cnt == 0) {res = num; ++cnt;}
else if (num == res) ++cnt;
else --cnt;
}
return res;
}
}
下面这种解法利用到了位操作 Bit Manipulation 来解,将这个大多数按位来建立,从0到31位,每次统计下数组中该位上0和1的个数,如果1多,那么将结果 res 中该位变为1,最后累加出来的 res 就是过半数了,相当赞的方法,参见代码如下:
C++ 解法二:
class Solution {
public:
int majorityElement(vector<int>& nums) {
int res = 0, n = nums.size();
for (int i = 0; i < 32; ++i) {
int ones = 0, zeros = 0;
for (int num : nums) {
if (ones > n / 2 || zeros > n / 2) break;
if ((num & (1 << i)) != 0) ++ones;
else ++zeros;
}
if (ones > zeros) res |= (1 << i);
}
return res;
}
};
Java 解法二:
public class Solution {
public int majorityElement(int[] nums) {
int res = 0, n = nums.length;
for (int i = 0; i < 32; ++i) {
int ones = 0, zeros = 0;
for (int num : nums) {
if (ones > n / 2 || zeros > n / 2) break;
if ((num & (1 << i)) != 0) ++ones;
else ++zeros;
}
if (ones > zeros) res |= (1 << i);
}
return res;
}
}
Given an array
nums
of sizen
, return the majority element.The majority element is the element that appears more than
⌊n / 2⌋
times. You may assume that the majority element always exists in the array.Example 1:
Example 2:
Constraints:
n == nums.length
1 <= n <= 5 * 104
-231 <= nums[i] <= 231 - 1
Follow-up: Could you solve the problem in linear time and in
O(1)
space?这是到求大多数的问题,有很多种解法,其中我感觉比较好的有两种,一种是用哈希表,这种方法需要 O(n) 的时间和空间,另一种是用一种叫摩尔投票法 Moore Voting,需要 O(n) 的时间和 O(1) 的空间,比前一种方法更好。这种投票法先将第一个数字假设为过半数,然后把计数器设为1,比较下一个数和此数是否相等,若相等则计数器加一,反之减一。然后看此时计数器的值,若为零,则将下一个值设为候选过半数。以此类推直到遍历完整个数组,当前候选过半数即为该数组的过半数。不仔细弄懂摩尔投票法的精髓的话,过一阵子还是会忘记的,首先要明确的是这个叼炸天的方法是有前提的,就是数组中一定要有过半数的存在才能使用,下面来看本算法的思路,这是一种先假设候选者,然后再进行验证的算法。现将数组中的第一个数假设为过半数,然后进行统计其出现的次数,如果遇到同样的数,则计数器自增1,否则计数器自减1,如果计数器减到了0,则更换下一个数字为候选者。这是一个很巧妙的设定,也是本算法的精髓所在,为啥遇到不同的要计数器减1呢,为啥减到0了又要更换候选者呢?首先是有那个强大的前提存在,一定会有一个出现超过半数的数字存在,那么如果计数器减到0了话,说明目前不是候选者数字的个数已经跟候选者的出现个数相同了,那么这个候选者已经很 weak,不一定能出现超过半数,此时选择更换当前的候选者。那有可能你会有疑问,那万一后面又大量的出现了之前的候选者怎么办,不需要担心,如果之前的候选者在后面大量出现的话,其又会重新变为候选者,直到最终验证成为正确的过半数,佩服算法的提出者啊,代码如下:
C++ 解法一:
Java 解法一:
下面这种解法利用到了位操作 Bit Manipulation 来解,将这个大多数按位来建立,从0到31位,每次统计下数组中该位上0和1的个数,如果1多,那么将结果 res 中该位变为1,最后累加出来的 res 就是过半数了,相当赞的方法,参见代码如下:
C++ 解法二:
Java 解法二:
Github 同步地址:
#169
类似题目:
Majority Element II
参考资料:
https://leetcode.com/problems/majority-element/
https://leetcode.com/problems/majority-element/discuss/51613/O(n)-time-O(1)-space-fastest-solution
https://leetcode.com/problems/majority-element/discuss/51612/6-Suggested-Solutions-in-C++-with-Explanations
https://leetcode.com/problems/majority-element/discuss/51611/Java-solutions-(sorting-hashmap-moore-voting-bit-manipulation).
https://leetcode.com/problems/majority-element/discuss/51828/C++-solution-using-Moore's-voting-algorithm-O(n)-runtime-comlexity-an-no-extra-array-or-hash-table
LeetCode All in One 题目讲解汇总(持续更新中...)
The text was updated successfully, but these errors were encountered: