We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Implement a trie with insert, search, and startsWith methods.
insert
search
startsWith
Example:
Trie trie = new Trie(); trie.insert("apple"); trie.search("apple"); // returns true trie.search("app"); // returns false trie.startsWith("app"); // returns true trie.insert("app"); trie.search("app"); // returns true
Note:
a-z
这道题让我们实现一个重要但又有些复杂的数据结构-字典树, 又称前缀树或单词查找树,详细介绍可以参见网友董的博客,例如,一个保存了8个键的trie结构,"A", "to", "tea", "ted", "ten", "i", "in", and "inn",如下图所示:
字典树主要有如下三点性质:
1. 根节点不包含字符,除根节点意外每个节点只包含一个字符。
2. 从根节点到某一个节点,路径上经过的字符连接起来,为该节点对应的字符串。
3. 每个节点的所有子节点包含的字符串不相同。
字母树的插入(Insert)、删除( Delete)和查找(Find)都非常简单,用一个一重循环即可,即第i 次循环找到前i 个字母所对应的子树,然后进行相应的操作。实现这棵字母树,我们用最常见的数组保存(静态开辟内存)即可,当然也可以开动态的指针类型(动态开辟内存)。至于结点对儿子的指向,一般有三种方法:
1、对每个结点开一个字母集大小的数组,对应的下标是儿子所表示的字母,内容则是这个儿子对应在大数组上的位置,即标号;
2、对每个结点挂一个链表,按一定顺序记录每个儿子是谁;
3、使用左儿子右兄弟表示法记录这棵树。
三种方法,各有特点。第一种易实现,但实际的空间要求较大;第二种,较易实现,空间要求相对较小,但比较费时;第三种,空间要求最小,但相对费时且不易写。
我们这里只来实现第一种方法,这种方法实现起来简单直观,字母的字典树每个节点要定义一个大小为 26 的子节点指针数组,然后用一个标志符用来记录到当前位置为止是否为一个词,初始化的时候讲 26 个子节点都赋为空。那么 insert 操作只需要对于要插入的字符串的每一个字符算出其的位置,然后找是否存在这个子节点,若不存在则新建一个,然后再查找下一个。查找词和找前缀操作跟 insert 操作都很类似,不同点在于若不存在子节点,则返回 false。查找次最后还要看标识位,而找前缀直接返回 true 即可。代码如下:
class TrieNode { public: TrieNode *child[26]; bool isWord; TrieNode(): isWord(false) { for (auto &a : child) a = nullptr; } }; class Trie { public: Trie() { root = new TrieNode(); } void insert(string s) { TrieNode *p = root; for (auto &a : s) { int i = a - 'a'; if (!p->child[i]) p->child[i] = new TrieNode(); p = p->child[i]; } p->isWord = true; } bool search(string key) { TrieNode *p = root; for (auto &a : key) { int i = a - 'a'; if (!p->child[i]) return false; p = p->child[i]; } return p->isWord; } bool startsWith(string prefix) { TrieNode *p = root; for (auto &a : prefix) { int i = a - 'a'; if (!p->child[i]) return false; p = p->child[i]; } return true; } private: TrieNode* root; };
Github 同步地址:
#208
类似题目:
Add and Search Word - Data structure design
Design Search Autocomplete System
Replace Words
Implement Magic Dictionary
参考资料:
https://leetcode.com/problems/implement-trie-prefix-tree/
https://leetcode.com/problems/implement-trie-prefix-tree/discuss/58832/AC-JAVA-solution-simple-using-single-array
https://leetcode.com/problems/implement-trie-prefix-tree/discuss/58986/Concise-O(1)-JAVA-solution-based-on-HashMap
https://leetcode.com/problems/implement-trie-prefix-tree/discuss/58842/Maybe-the-code-is-not-too-much-by-using-%22next26%22-C%2B%2B
LeetCode All in One 题目讲解汇总(持续更新中...)
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Implement a trie with
insert
,search
, andstartsWith
methods.Example:
Note:
a-z
.这道题让我们实现一个重要但又有些复杂的数据结构-字典树, 又称前缀树或单词查找树,详细介绍可以参见网友董的博客,例如,一个保存了8个键的trie结构,"A", "to", "tea", "ted", "ten", "i", "in", and "inn",如下图所示:
字典树主要有如下三点性质:
1. 根节点不包含字符,除根节点意外每个节点只包含一个字符。
2. 从根节点到某一个节点,路径上经过的字符连接起来,为该节点对应的字符串。
3. 每个节点的所有子节点包含的字符串不相同。
字母树的插入(Insert)、删除( Delete)和查找(Find)都非常简单,用一个一重循环即可,即第i 次循环找到前i 个字母所对应的子树,然后进行相应的操作。实现这棵字母树,我们用最常见的数组保存(静态开辟内存)即可,当然也可以开动态的指针类型(动态开辟内存)。至于结点对儿子的指向,一般有三种方法:
1、对每个结点开一个字母集大小的数组,对应的下标是儿子所表示的字母,内容则是这个儿子对应在大数组上的位置,即标号;
2、对每个结点挂一个链表,按一定顺序记录每个儿子是谁;
3、使用左儿子右兄弟表示法记录这棵树。
三种方法,各有特点。第一种易实现,但实际的空间要求较大;第二种,较易实现,空间要求相对较小,但比较费时;第三种,空间要求最小,但相对费时且不易写。
我们这里只来实现第一种方法,这种方法实现起来简单直观,字母的字典树每个节点要定义一个大小为 26 的子节点指针数组,然后用一个标志符用来记录到当前位置为止是否为一个词,初始化的时候讲 26 个子节点都赋为空。那么 insert 操作只需要对于要插入的字符串的每一个字符算出其的位置,然后找是否存在这个子节点,若不存在则新建一个,然后再查找下一个。查找词和找前缀操作跟 insert 操作都很类似,不同点在于若不存在子节点,则返回 false。查找次最后还要看标识位,而找前缀直接返回 true 即可。代码如下:
Github 同步地址:
#208
类似题目:
Add and Search Word - Data structure design
Design Search Autocomplete System
Replace Words
Implement Magic Dictionary
参考资料:
https://leetcode.com/problems/implement-trie-prefix-tree/
https://leetcode.com/problems/implement-trie-prefix-tree/discuss/58832/AC-JAVA-solution-simple-using-single-array
https://leetcode.com/problems/implement-trie-prefix-tree/discuss/58986/Concise-O(1)-JAVA-solution-based-on-HashMap
https://leetcode.com/problems/implement-trie-prefix-tree/discuss/58842/Maybe-the-code-is-not-too-much-by-using-%22next26%22-C%2B%2B
LeetCode All in One 题目讲解汇总(持续更新中...)
The text was updated successfully, but these errors were encountered: