Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[LeetCode] 236. Lowest Common Ancestor of a Binary Tree #236

Open
grandyang opened this issue May 30, 2019 · 1 comment
Open

[LeetCode] 236. Lowest Common Ancestor of a Binary Tree #236

grandyang opened this issue May 30, 2019 · 1 comment

Comments

@grandyang
Copy link
Owner

grandyang commented May 30, 2019

 

Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.

According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”

Given the following binary tree:  root = [3,5,1,6,2,0,8,null,null,7,4]

 

Example 1:

Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
Output: 3
Explanation: The LCA of nodes 5 and 1 is 3.

Example 2:

Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
Output: 5
Explanation: The LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.

 

Note:

  • All of the nodes' values will be unique.
  • p and q are different and both values will exist in the binary tree.

 

这道求二叉树的最小共同父节点的题是之前那道 Lowest Common Ancestor of a Binary Search Tree 的 Follow Up。跟之前那题不同的地方是,这道题是普通是二叉树,不是二叉搜索树,所以就不能利用其特有的性质,我们只能在二叉树中来搜索p和q,然后从路径中找到最后一个相同的节点即为父节点,可以用递归来实现,在递归函数中,首先看当前结点是否为空,若为空则直接返回空,若为p或q中的任意一个,也直接返回当前结点。否则的话就对其左右子结点分别调用递归函数,由于这道题限制了p和q一定都在二叉树中存在,那么如果当前结点不等于p或q,p和q要么分别位于左右子树中,要么同时位于左子树,或者同时位于右子树,那么我们分别来讨论:

- 若p和q分别位于左右子树中,那么对左右子结点调用递归函数,会分别返回p和q结点的位置,而当前结点正好就是p和q的最小共同父结点,直接返回当前结点即可,这就是题目中的例子1的情况。

- 若p和q同时位于左子树,这里有两种情况,一种情况是 left 会返回p和q中较高的那个位置,而 right 会返回空,所以最终返回非空的 left 即可,这就是题目中的例子2的情况。还有一种情况是会返回p和q的最小父结点,就是说当前结点的左子树中的某个结点才是p和q的最小父结点,会被返回。

- 若p和q同时位于右子树,同样这里有两种情况,一种情况是 right 会返回p和q中较高的那个位置,而 left 会返回空,所以最终返回非空的 right 即可,还有一种情况是会返回p和q的最小父结点,就是说当前结点的右子树中的某个结点才是p和q的最小父结点,会被返回,写法很简洁,代码如下:

 

解法一:

class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
       if (!root || p == root || q == root) return root;
       TreeNode *left = lowestCommonAncestor(root->left, p, q);
       TreeNode *right = lowestCommonAncestor(root->right, p , q);
       if (left && right) return root;
       return left ? left : right;
    }
};

 

上述代码可以进行优化一下,如果当前结点不为空,且既不是p也不是q,那么根据上面的分析,p和q的位置就有三种情况,p和q要么分别位于左右子树中,要么同时位于左子树,或者同时位于右子树。我们需要优化的情况就是当p和q同时为于左子树或右子树中,而且返回的结点并不是p或q,那么就是p和q的最小父结点了,已经求出来了,就不用再对右结点调用递归函数了,这是为啥呢?因为根本不会存在 left 既不是p也不是q,同时还有p或者q在 right 中。首先递归的第一句就限定了只要遇到了p或者q,就直接返回,之后又限定了只有当 left 和 right 同时存在的时候,才会返回当前结点,当前结点若不是p或q,则一定是最小父节点,否则 left 一定是p或者q。这里的逻辑比较绕,不太好想,多想想应该可以理清头绪吧,参见代码如下:

 

解法二:

class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
       if (!root || p == root || q == root) return root;
       TreeNode *left = lowestCommonAncestor(root->left, p, q);
       if (left && left != p && left != q) return left;
       TreeNode *right = lowestCommonAncestor(root->right, p , q);  
    if (left && right) return root;
       return left ? left : right;
    }
};

 

讨论:此题还有一种情况,题目中没有明确说明p和q是否是树中的节点,如果不是,应该返回 nullptr,而上面的方法就不正确了,对于这种情况请参见 Cracking the Coding Interview 5th Edition 的第 233-234 页。

 

Github 同步地址:

#236

 

类似题目:

Lowest Common Ancestor of a Binary Search Tree

 

参考资料:

https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-tree/

https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-tree/discuss/65225/4-lines-C++JavaPythonRuby

 

LeetCode All in One 题目讲解汇总(持续更新中...)

@itsdawei
Copy link

itsdawei commented Mar 5, 2021

讨论:此题还有一种情况,题目中没有明确说明p和q是否是树中的节点,如果不是,应该返回 nullptr,而上面的方法就不正确了,对于这种情况请参见 Cracking the Coding Interview 5th Edition 的第 233-234 页。

题目中有说明p和q一定是树中的节点:“p and q are different and both values will exist in the binary tree.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants