You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
You want to build a house on an empty land which reaches all buildings in the shortest amount of distance. You can only move up, down, left and right. You are given a 2D grid of values 0, 1 or 2, where:
Each 0 marks an empty land which you can pass by freely.
Each 1 marks a building which you cannot pass through.
Each 2 marks an obstacle which you cannot pass through.
For example, given three buildings at (0,0), (0,4), (2,2), and an obstacle at (0,2):
The point (1,2) is an ideal empty land to build a house, as the total travel distance of 3+3+1=7 is minimal. So return 7.
Note:
There will be at least one building. If it is not possible to build such house according to the above rules, return -1.
这道题给我们了一些建筑物的坐标和一些障碍物的坐标,让我们找一个位置,使其到所有建筑物的曼哈顿距离之和最小,起初我觉得这题应该算Best Meeting Point那道题的拓展,不同之处在于这道题有了障碍物的存在,这样就使得直接使用曼哈顿距离的计算公式变得不可行,因为在有些情况下,障碍物完全封死了某个建筑物,那么这时候应该返回-1。所以这道题只能使用遍历迷宫的思想来解,那么这题就和之前那道Walls and Gates很类似,但是这道题用DFS就会很麻烦,因为我们的目标是要建立Distance Map,所以BFS的特性使得其非常适合建立距离场,而DFS由于是沿着一个方向一股脑的搜索,然后会面临着更新距离的问题,只有当递归函数都调用结束后,距离场才建立好,那么我们累加距离场时又得整个遍历一遍,非常不高效。主要原因还是由于DFS的搜索方式不适合距离场,因为BFS遍历完一个点后,不会再来更改这个点的值,而DFS会反复的更改同一个点的值,我强行用DFS写出的方法无法通过OJ最后一个大集合,所以这道题还是老老实实地用BFS来解题吧,还是需要借助queue来遍历,我们对于每一个建筑的位置都进行一次全图的BFS遍历,每次都建立一个dist的距离场,由于我们BFS遍历需要标记应经访问过的位置,而我们并不想建立一个visit的二维矩阵,那么怎么办呢,这里用一个小trick,我们第一遍历的时候,都是找0的位置,遍历完后,我们将其赋为-1,这样下一轮遍历我们就找-1的位置,然后将其都赋为-2,以此类推直至遍历完所有的建筑物,然后在遍历的过程中更新dist和sum的值,注意我们的dist算是个局部变量,每次都初始化为grid,真正的距离场累加在sum中,由于建筑的位置在grid中是1,所以dist中初始化也是1,累加到sum中就需要减1,我们用sum中的值来更新结果res的值,最后根据res的值看是否要返回-1,参见代码如下:
解法一:
class Solution {
public:
int shortestDistance(vector<vector<int>>& grid) {
int res = INT_MAX, val = 0, m = grid.size(), n = grid[0].size();
vector<vector<int>> sum = grid;
vector<vector<int>> dirs{{0,-1},{-1,0},{0,1},{1,0}};
for (int i = 0; i < grid.size(); ++i) {
for (int j = 0; j < grid[i].size(); ++j) {
if (grid[i][j] == 1) {
res = INT_MAX;
vector<vector<int>> dist = grid;
queue<pair<int, int>> q;
q.push({i, j});
while (!q.empty()) {
int a = q.front().first, b = q.front().second; q.pop();
for (int k = 0; k < dirs.size(); ++k) {
int x = a + dirs[k][0], y = b + dirs[k][1];
if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == val) {
--grid[x][y];
dist[x][y] = dist[a][b] + 1;
sum[x][y] += dist[x][y] - 1;
q.push({x, y});
res = min(res, sum[x][y]);
}
}
}
--val;
}
}
}
return res == INT_MAX ? -1 : res;
}
};
class Solution {
public:
int shortestDistance(vector<vector<int>>& grid) {
int res = INT_MAX, buildingCnt = 0, m = grid.size(), n = grid[0].size();
vector<vector<int>> dist(m, vector<int>(n, 0)), cnt = dist;
vector<vector<int>> dirs{{0,-1},{-1,0},{0,1},{1,0}};
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == 1) {
++buildingCnt;
queue<pair<int, int>> q;
q.push({i, j});
vector<vector<bool>> visited(m, vector<bool>(n, false));
int level = 1;
while (!q.empty()) {
int size = q.size();
for (int s = 0; s < size; ++s) {
int a = q.front().first, b = q.front().second; q.pop();
for (int k = 0; k < dirs.size(); ++k) {
int x = a + dirs[k][0], y = b + dirs[k][1];
if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == 0 && !visited[x][y]) {
dist[x][y] += level;
++cnt[x][y];
visited[x][y] = true;
q.push({x, y});
}
}
}
++level;
}
}
}
}
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == 0 && cnt[i][j] == buildingCnt) {
res = min(res, dist[i][j]);
}
}
}
return res == INT_MAX ? -1 : res;
}
};
You want to build a house on an empty land which reaches all buildings in the shortest amount of distance. You can only move up, down, left and right. You are given a 2D grid of values 0, 1 or 2, where:
For example, given three buildings at
(0,0)
,(0,4)
,(2,2)
, and an obstacle at(0,2)
:The point
(1,2)
is an ideal empty land to build a house, as the total travel distance of 3+3+1=7 is minimal. So return 7.Note:
There will be at least one building. If it is not possible to build such house according to the above rules, return -1.
这道题给我们了一些建筑物的坐标和一些障碍物的坐标,让我们找一个位置,使其到所有建筑物的曼哈顿距离之和最小,起初我觉得这题应该算Best Meeting Point那道题的拓展,不同之处在于这道题有了障碍物的存在,这样就使得直接使用曼哈顿距离的计算公式变得不可行,因为在有些情况下,障碍物完全封死了某个建筑物,那么这时候应该返回-1。所以这道题只能使用遍历迷宫的思想来解,那么这题就和之前那道Walls and Gates很类似,但是这道题用DFS就会很麻烦,因为我们的目标是要建立Distance Map,所以BFS的特性使得其非常适合建立距离场,而DFS由于是沿着一个方向一股脑的搜索,然后会面临着更新距离的问题,只有当递归函数都调用结束后,距离场才建立好,那么我们累加距离场时又得整个遍历一遍,非常不高效。主要原因还是由于DFS的搜索方式不适合距离场,因为BFS遍历完一个点后,不会再来更改这个点的值,而DFS会反复的更改同一个点的值,我强行用DFS写出的方法无法通过OJ最后一个大集合,所以这道题还是老老实实地用BFS来解题吧,还是需要借助queue来遍历,我们对于每一个建筑的位置都进行一次全图的BFS遍历,每次都建立一个dist的距离场,由于我们BFS遍历需要标记应经访问过的位置,而我们并不想建立一个visit的二维矩阵,那么怎么办呢,这里用一个小trick,我们第一遍历的时候,都是找0的位置,遍历完后,我们将其赋为-1,这样下一轮遍历我们就找-1的位置,然后将其都赋为-2,以此类推直至遍历完所有的建筑物,然后在遍历的过程中更新dist和sum的值,注意我们的dist算是个局部变量,每次都初始化为grid,真正的距离场累加在sum中,由于建筑的位置在grid中是1,所以dist中初始化也是1,累加到sum中就需要减1,我们用sum中的值来更新结果res的值,最后根据res的值看是否要返回-1,参见代码如下:
解法一:
下面这种方法也是网上比较流行的解法,我们还是用BFS来做,其中dist是累加距离场,cnt表示某个位置已经计算过的建筑数,变量buildingCnt为建筑的总数,我们还是用queue来辅助计算,注意这里的dist的更新方式跟上面那种方法的不同,这里的dist由于是累积距离场,所以不能用dist其他位置的值来更新,而是需要直接加上和建筑物之间的距离,这里用level来表示,每遍历一层,level自增1,这样我们就需要所加个for循环,来控制每一层中的level值是相等的,参见代码如下:
解法二:
类似题目:
Best Meeting Point
Walls and Gates
参考资料:
https://leetcode.com/discuss/74453/36-ms-c-solution
https://discuss.leetcode.com/topic/31925/java-solution-with-explanation-and-time-complexity-analysis/2
LeetCode All in One 题目讲解汇总(持续更新中...)
The text was updated successfully, but these errors were encountered: