We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the array.
Formally the function should:
Return true if there exists i, j, k such that arr[i] < arr[j] < arr[k] given 0 ≤ i < j < k ≤ n -1 else return false.
Your algorithm should run in O( n ) time complexity and O( 1 ) space complexity.
Examples: Given [1, 2, 3, 4, 5], return true.
[1, 2, 3, 4, 5]
true
Given [5, 4, 3, 2, 1], return false.
[5, 4, 3, 2, 1]
false
Credits: Special thanks to @DjangoUnchained for adding this problem and creating all test cases.
这道题让我们求一个无序数组中是否有任意三个数字是递增关系的,我最先相处的方法是用一个dp数组,dp[i]表示在i位置之前小于等于nums[i]的数字的个数(包括其本身),我们初始化dp数组都为1,然后我们开始遍历原数组,对当前数字nums[i],我们遍历其之前的所有数字,如果之前某个数字nums[j]小于nums[i],那么我们更新dp[i] = max(dp[i], dp[j] + 1),如果此时dp[i]到3了,则返回true,若遍历完成,则返回false,参见代码如下:
解法一:
// Dumped, brute force class Solution { public: bool increasingTriplet(vector<int>& nums) { vector<int> dp(nums.size(), 1); for (int i = 0; i < nums.size(); ++i) { for (int j = 0; j < i; ++j) { if (nums[j] < nums[i]) { dp[i] = max(dp[i], dp[j] + 1); if (dp[i] >= 3) return true; } } } return false; } };
但是题目中要求我们O(n)的时间复杂度和O(1)的空间复杂度,上面的那种方法一条都没满足,所以白写了。我们下面来看满足题意的方法,这个思路是使用两个指针m1和m2,初始化为整型最大值,我们遍历数组,如果m1大于等于当前数字,则将当前数字赋给m1;如果m1小于当前数字且m2大于等于当前数字,那么将当前数字赋给m2,一旦m2被更新了,说明一定会有一个数小于m2,那么我们就成功的组成了一个长度为2的递增子序列,所以我们一旦遍历到比m2还大的数,我们直接返回ture。如果我们遇到比m1小的数,还是要更新m1,有可能的话也要更新m2为更小的值,毕竟m2的值越小,能组成长度为3的递增序列的可能性越大,参见代码如下:
解法二:
class Solution { public: bool increasingTriplet(vector<int>& nums) { int m1 = INT_MAX, m2 = INT_MAX; for (auto a : nums) { if (m1 >= a) m1 = a; else if (m2 >= a) m2 = a; else return true; } return false; } };
如果觉得上面的解法不容易想出来,那么如果能想出下面这种解法,估计面试官也会为你点赞。这种方法的虽然不满足常数空间的要求,但是作为对暴力搜索的优化,也是一种非常好的解题思路。这个解法的思路是建立两个数组,forward数组和backward数组,其中forward[i]表示[0, i]之间最小的数,backward[i]表示[i, n-1]之间最大的数,那么对于任意一个位置i,如果满足 forward[i] < nums[i] < backward[i],则表示这个递增三元子序列存在,举个例子来看吧,比如:
nums: 8 3 5 1 6
foward: 8 3 3 1 1
backward: 8 6 6 6 6
我们发现数字5满足forward[i] < nums[i] < backward[i],所以三元子序列存在。
解法三:
class Solution { public: bool increasingTriplet(vector<int>& nums) { if (nums.size() < 3) return false; int n = nums.size(); vector<int> f(n, nums[0]), b(n, nums.back()); for (int i = 1; i < n; ++i) { f[i] = min(f[i - 1], nums[i]); } for (int i = n - 2; i >= 0; --i) { b[i] = max(b[i + 1], nums[i]); } for (int i = 0; i < n; ++i) { if (nums[i] > f[i] && nums[i] < b[i]) return true; } return false; } };
参考资料:
https://leetcode.com/discuss/86593/clean-and-short-with-comments-c
LeetCode All in One 题目讲解汇总(持续更新中...)
The text was updated successfully, but these errors were encountered:
第一个方法超时,且有一个测试用例过不去
Sorry, something went wrong.
No branches or pull requests
Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the array.
Formally the function should:
Your algorithm should run in O( n ) time complexity and O( 1 ) space complexity.
Examples:
Given
[1, 2, 3, 4, 5]
,return
true
.Given
[5, 4, 3, 2, 1]
,return
false
.Credits:
Special thanks to @DjangoUnchained for adding this problem and creating all test cases.
这道题让我们求一个无序数组中是否有任意三个数字是递增关系的,我最先相处的方法是用一个dp数组,dp[i]表示在i位置之前小于等于nums[i]的数字的个数(包括其本身),我们初始化dp数组都为1,然后我们开始遍历原数组,对当前数字nums[i],我们遍历其之前的所有数字,如果之前某个数字nums[j]小于nums[i],那么我们更新dp[i] = max(dp[i], dp[j] + 1),如果此时dp[i]到3了,则返回true,若遍历完成,则返回false,参见代码如下:
解法一:
但是题目中要求我们O(n)的时间复杂度和O(1)的空间复杂度,上面的那种方法一条都没满足,所以白写了。我们下面来看满足题意的方法,这个思路是使用两个指针m1和m2,初始化为整型最大值,我们遍历数组,如果m1大于等于当前数字,则将当前数字赋给m1;如果m1小于当前数字且m2大于等于当前数字,那么将当前数字赋给m2,一旦m2被更新了,说明一定会有一个数小于m2,那么我们就成功的组成了一个长度为2的递增子序列,所以我们一旦遍历到比m2还大的数,我们直接返回ture。如果我们遇到比m1小的数,还是要更新m1,有可能的话也要更新m2为更小的值,毕竟m2的值越小,能组成长度为3的递增序列的可能性越大,参见代码如下:
解法二:
如果觉得上面的解法不容易想出来,那么如果能想出下面这种解法,估计面试官也会为你点赞。这种方法的虽然不满足常数空间的要求,但是作为对暴力搜索的优化,也是一种非常好的解题思路。这个解法的思路是建立两个数组,forward数组和backward数组,其中forward[i]表示[0, i]之间最小的数,backward[i]表示[i, n-1]之间最大的数,那么对于任意一个位置i,如果满足 forward[i] < nums[i] < backward[i],则表示这个递增三元子序列存在,举个例子来看吧,比如:
nums: 8 3 5 1 6
foward: 8 3 3 1 1
backward: 8 6 6 6 6
我们发现数字5满足forward[i] < nums[i] < backward[i],所以三元子序列存在。
解法三:
参考资料:
https://leetcode.com/discuss/86593/clean-and-short-with-comments-c
LeetCode All in One 题目讲解汇总(持续更新中...)
The text was updated successfully, but these errors were encountered: