You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
The Hamming distance between two integers is the number of positions at which the corresponding bits are different.
Now your job is to find the total Hamming distance between all pairs of the given numbers.
Example:
Input: 4, 14, 2
Output: 6
Explanation: In binary representation, the 4 is 0100, 14 is 1110, and 2 is 0010 (just
showing the four bits relevant in this case). So the answer will be:
HammingDistance(4, 14) + HammingDistance(4, 2) + HammingDistance(14, 2) = 2 + 2 + 2 = 6.
Note:
Elements of the given array are in the range of 0 to 10^9
class Solution {
public:
int totalHammingDistance(vector<int>& nums) {
int res = 0, n = nums.size();
for (int i = 0; i < 32; ++i) {
int cnt = 0;
for (int num : nums) {
if (num & (1 << i)) ++cnt;
}
res += cnt * (n - cnt);
}
return res;
}
};
The Hamming distance between two integers is the number of positions at which the corresponding bits are different.
Now your job is to find the total Hamming distance between all pairs of the given numbers.
Example:
Note:
0
to10^9
10^4
.这道题是之前那道 Hamming Distance 的拓展,由于有之前那道题的经验,我们知道需要用异或来求每个位上的情况,那么需要来找出某种规律来,比如看下面这个例子,4,14,2 和1:
4: 0 1 0 0
14: 1 1 1 0
2: 0 0 1 0
1: 0 0 0 1
先看最后一列,有三个0和一个1,那么它们之间相互的汉明距离就是3,即1和其他三个0分别的距离累加,然后在看第三列,累加汉明距离为4,因为每个1都会跟两个0产生两个汉明距离,同理第二列也是4,第一列是3。仔细观察累计汉明距离和0跟1的个数,可以发现其实就是0的个数乘以1的个数,发现了这个重要的规律,那么整道题就迎刃而解了,只要统计出每一位的1的个数即可,参见代码如下:
Github 同步地址:
#477
类似题目:
Hamming Distance
参考资料:
https://leetcode.com/problems/total-hamming-distance/
https://leetcode.com/problems/total-hamming-distance/discuss/96226/Java-O(n)-time-O(1)-Space
https://leetcode.com/problems/total-hamming-distance/discuss/96243/Share-my-O(n)-C%2B%2B-bitwise-solution-with-thinking-process-and-explanation
LeetCode All in One 题目讲解汇总(持续更新中...)
The text was updated successfully, but these errors were encountered: