Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[LeetCode] 634. Find the Derangement of An Array #634

Open
grandyang opened this issue May 30, 2019 · 0 comments
Open

[LeetCode] 634. Find the Derangement of An Array #634

grandyang opened this issue May 30, 2019 · 0 comments

Comments

@grandyang
Copy link
Owner

grandyang commented May 30, 2019

 

In combinatorial mathematics, a derangement is a permutation of the elements of a set, such that no element appears in its original position.

There's originally an array consisting of n integers from 1 to n in ascending order, you need to find the number of derangement it can generate.

Also, since the answer may be very large, you should return the output mod 109 + 7.

Example 1:

Input: 3
Output: 2
Explanation: The original array is [1,2,3]. The two derangements are [2,3,1] and [3,1,2].

 

Note:
n is in the range of [1, 106].

 

这道题给了我们一个数组,让我们求其错排的个数,所谓错排就是1到n中的每个数字都不在其原有的位置上,全部打乱了,问能有多少种错排的方式。博主注意到了这道题又让对一个很大的数取余,而且每次那个很大的数都是109 + 7,为啥大家都偏爱这个数呢,有啥特别之处吗?根据博主之前的经验,这种结果很大很大的题十有八九都是用dp来做的,那么就建一个一维的dp数组吧,其中dp[i]表示1到i中的错位排列的个数。那么难点就是找递推公式啦,先从最简单的情况来看:

n = 1 时有 0 种错排

n = 2 时有 1 种错排 [2, 1]

n = 3 时有 2 种错排 [3, 1, 2], [2, 3, 1]

然后博主就在想知道了dp[2],能求出dp[3]吗,又在考虑是不是算加入数字3的情况的个数。结果左看右看发现没有啥特别的规律,又在想是不是有啥隐含的信息需要挖掘,还是没想出来。于是看了一眼标签,发现是Math,我的天,难道又是小学奥数的题?挣扎了半天最后还是放弃了,上网去搜大神们的解法。其实这道题是组合数学种的错排问题,是有专门的递归公式的。

我们来想n = 4时该怎么求,我们假设把4排在了第k位,这里我们就让k = 3吧,那么我们就把4放到了3的位置,变成了:

x x 4 x

我们看被4占了位置的3,应该放到哪里,这里分两种情况,如果3放到了4的位置,那么有:

x x 4 3

那么此时4和3的位置都确定了,实际上只用排1和2了,那么就相当于只排1和2,就是dp[2]的值,是已知的。那么再来看第二种情况,3不在4的位置,那么此时我们把4去掉的话,就又变成了:

x x x

这里3不能放在第3个x的位置,在去掉4之前,这里是移动4之前的4的位置,那么实际上这又变成了排1,2,3的情况了,就是dp[3]的值。

再回到最开始我们选k的时候,我们当时选了k = 3,其实k可以等于1,2,3,也就是有三种情况,所以dp[4] = 3 * (dp[3] + dp[2])。

那么递推公式也就出来了:

dp[i] = (i - 1) * (dp[i - 1] + dp[i - 2])

有了递推公式,代码就不难写了吧,参见代码如下:

 

解法一:

class Solution {
public:
    int findDerangement(int n) {
        if (n < 2) return 0;
        vector<long long> dp(n + 1, 0);
        dp[1] = 0; dp[2] = 1;
        for (int i = 3; i <= n; ++i) {
            dp[i] = (dp[i - 1] + dp[i - 2]) * (i - 1) % 1000000007;
        }
        return dp[n];
    }
};

 

下面这种解法精简了空间,因为当前值只跟前两个值有关系,所以没必要保留整个数组,只用两个变量来记录前两个值,并每次更新一下就好了,参见代码如下:

 

解法二:

class Solution {
public:
    int findDerangement(int n) {
        long long a = 0, b = 1, res = 1;
        for (int i = 3; i <= n; ++i) {
            res = (i - 1) * (a + b) % 1000000007;
            a = b;
            b = res;
        }
        return (n == 1) ? 0 : res;
    }
};

 

下面这种方法是对之前的递推公式进行了推导变形,使其只跟前一个数有关,具体的推导步骤是这样的:

我们假设 e[i] = dp[i] - i * dp[i - 1]

递推公式为:  dp[i] = (i - 1) * (dp[i - 1] + dp[i - 2])

将递推公式带入假设,得到:

e[i] = -dp[i - 1] + (n - 1) * dp[i - 2] = -e[i - 1]

从而得到 e[i] = (-1)^n

那么带回假设公式,可得: dp[i] = i * dp[i - 1] + (-1)^n

根据这个新的递推公式,可以写出代码如下:

 

解法三:

class Solution {
public:
    int findDerangement(int n) {
        long long res = 1;
        for (int i = 1; i <= n; ++i) {
            res = (i * res + (i % 2 == 0 ? 1 : -1)) % 1000000007; 
        }
        return res;
    }
};

 

参考资料:

https://discuss.leetcode.com/topic/94429/o-n-short-java-code

https://discuss.leetcode.com/topic/94767/java-dp-solution-with-explanation

https://discuss.leetcode.com/topic/94421/java-solution-with-explanation-by-using-staggered-formula

 

LeetCode All in One 题目讲解汇总(持续更新中...)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant