Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[LeetCode] 689. Maximum Sum of 3 Non-Overlapping Subarrays #689

Open
grandyang opened this issue May 30, 2019 · 0 comments
Open

[LeetCode] 689. Maximum Sum of 3 Non-Overlapping Subarrays #689

grandyang opened this issue May 30, 2019 · 0 comments

Comments

@grandyang
Copy link
Owner

grandyang commented May 30, 2019

 

In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum.

Each subarray will be of size k, and we want to maximize the sum of all 3*k entries.

Return the result as a list of indices representing the starting position of each interval (0-indexed). If there are multiple answers, return the lexicographically smallest one.

Example:

Input: [1,2,1,2,6,7,5,1], 2
Output: [0, 3, 5]
Explanation: Subarrays [1, 2], [2, 6], [7, 5] correspond to the starting indices [0, 3, 5].
We could have also taken [2, 1], but an answer of [1, 3, 5] would be lexicographically larger.

 

Note:

  • nums.length will be between 1 and 20000.
  • nums[i] will be between 1 and 65535.
  • k will be between 1 and floor(nums.length / 3).

 

这道题给了我们一个只包含正数的数组,让我们找三个长度为k的不重叠的子数组,使得所有子数组的数字之和最大。首先我们应该明确的是,暴力搜索在这道题上基本不太可能,因为遍历一个子数组的复杂度是平方级,遍历三个还不得六次方啊,看OJ不削你~那么我们只能另辟蹊径,对于这种求子数组和有关的题目时,一般都需要建立累加和数组,为啥呢,因为累加和数组可以快速的求出任意长度的子数组之和,当然也能快速的求出长度为k的子数组之和。因为这道题只让我们找出三个子数组,那么我们可以先确定中间那个子数组的位置,这样左右两边的子数组的位置范围就缩小了,中间子数组的起点不能是从开头到结尾整个区间,必须要在首尾各留出k个位置给其他两个数组。一旦中间子数组的起始位置确定了,那么其和就能通过累加和数组快速确定。那么现在就要在左右两边的区间内分别找出和最大的子数组,遍历所有的子数组显然不是很高效,如何快速求出呢,这里我们需要使用动态规划Dynamic Programming的思想来维护两个DP数组left和right,其中:

left[i]表示在区间[0, i]范围内长度为k且和最大的子数组的起始位置

right[i]表示在区间[i, n - 1]范围内长度为k且和最大的子数组的起始位置

这两个dp数组各需要一个for循环来更新,left数组都初始化为0,前k个数字没办法,肯定起点都是0,变量total初始化为前k个数字之和,然后从第k+1个数字开始,每次向前取k个,利用累加和数组sums快速算出数字之和,跟total比较,如果大于total的话,那么更新total和left数组当前位置值,否则的话left数组的当前值就赋值为前一位的值。同理对right数组的更新也类似,total初始化为最后k个数字之和,然后从前一个数字向前遍历,如果大于total,更新total和right数组的当前位置,否则right数组的当前值就赋值为后一位的值。一旦left数组和right数组都更新好了,那么就可以遍历中间子数组的起始位置了,然后我们可以通过left和right数组快速定位出左边和右边的最大子数组的起始位置,并快速计算出这三个子数组的所有数字之和,用来更新全局最大值mx,如果mx被更新了的话,记录此时的三个子数组的起始位置到结果res中,参见代码如下:

 

class Solution {
public:
    vector<int> maxSumOfThreeSubarrays(vector<int>& nums, int k) {
        int n = nums.size(), mx = INT_MIN;
        vector<int> sums{0}, res, left(n, 0), right(n, n - k);
        for (int num : nums) sums.push_back(sums.back() + num);
        for (int i = k, total = sums[k] - sums[0]; i < n; ++i) {
            if (sums[i + 1] - sums[i + 1 - k] > total) {
                left[i] = i + 1 - k;
                total = sums[i + 1] - sums[i + 1 - k];
            } else {
                left[i] = left[i - 1];
            }
        }
        for (int i = n - 1 - k, total = sums[n] - sums[n - k]; i >= 0; --i) {
            if (sums[i + k] - sums[i] >= total) {
                right[i] = i;
                total = sums[i + k] - sums[i];
            } else {
                right[i] = right[i + 1];
            }
        }
        for (int i = k; i <= n - 2 * k; ++i) {
            int l = left[i - 1], r = right[i + k];
            int total = (sums[i + k] - sums[i]) + (sums[l + k] - sums[l]) + (sums[r + k] - sums[r]);
            if (mx < total) {
                mx = total;
                res = {l, i, r};
            }
        }
        return res;
    }
};

 

类似题目:

Best Time to Buy and Sell Stock III

 

参考资料:

https://leetcode.com/problems/maximum-sum-of-3-non-overlapping-subarrays/discuss/108231/C++Java-DP-with-explanation-O(n)

https://leetcode.com/problems/maximum-sum-of-3-non-overlapping-subarrays/discuss/108246/C++-O(n)-time-O(n)-space-concise-solution

https://leetcode.com/problems/maximum-sum-of-3-non-overlapping-subarrays/discuss/108230/Clean-Java-DP-O(n)-Solution.-Easy-extend-to-Sum-of-K-Non-Overlapping-SubArrays

 

LeetCode All in One 题目讲解汇总(持续更新中...)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant