Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[LeetCode] 750. Number Of Corner Rectangles #750

Open
grandyang opened this issue May 30, 2019 · 0 comments
Open

[LeetCode] 750. Number Of Corner Rectangles #750

grandyang opened this issue May 30, 2019 · 0 comments

Comments

@grandyang
Copy link
Owner

grandyang commented May 30, 2019

 

Given a grid where each entry is only 0 or 1, find the number of corner rectangles.

corner rectangle  is 4 distinct 1s on the grid that form an axis-aligned rectangle. Note that only the corners need to have the value 1. Also, all four 1s used must be distinct.

 

Example 1:

Input: grid = 
[[1, 0, 0, 1, 0],
 [0, 0, 1, 0, 1],
 [0, 0, 0, 1, 0],
 [1, 0, 1, 0, 1]]
Output: 1
Explanation: There is only one corner rectangle, with corners grid[1][2], grid[1][4], grid[3][2], grid[3][4].

 

Example 2:

Input: grid = 
[[1, 1, 1],
 [1, 1, 1],
 [1, 1, 1]]
Output: 9
Explanation: There are four 2x2 rectangles, four 2x3 and 3x2 rectangles, and one 3x3 rectangle.

 

Example 3:

Input: grid = 
[[1, 1, 1, 1]]
Output: 0
Explanation: Rectangles must have four distinct corners.

 

Note:

  1. The number of rows and columns of grid will each be in the range [1, 200].
  2. Each grid[i][j] will be either 0 or 1.
  3. The number of 1s in the grid will be at most 6000.

 

这道题给了我们一个由0和1组成的二维数组,这里定义了一种边角矩形,其四个顶点均为1,让我们求这个二维数组中有多少个不同的边角矩形。那么最简单直接的方法就是暴力破解啦,我们遍历所有的子矩形,并且检验其四个顶点是否为1即可。先确定左上顶点,每个顶点都可以当作左上顶点,所以需要两个for循环,然后我们直接跳过非1的左上顶点,接下来就是要确定右上顶点和左下顶点了,先用一个for循环确定左下顶点的位置,同理,如果左下顶点为0,直接跳过。再用一个for循环确定右上顶点的位置,如果右上顶点位置也确定了,那么此时四个顶点中确定了三个,右下顶点的位置也就确定了,此时如果右上和右下顶点均为1,则结果res自增1,参见代码如下:

 

解法一:

class Solution {
public:
    int countCornerRectangles(vector<vector<int>>& grid) {
        int m = grid.size(), n = grid[0].size(), res = 0;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (grid[i][j] == 0) continue;
                for (int h = 1; h < m - i; ++h) {
                    if (grid[i + h][j] == 0) continue;
                    for (int w = 1; w < n - j; ++w) {
                        if (grid[i][j + w] == 1 && grid[i + h][j + w] == 1) ++res;
                    }
                }
            }
        }
        return res;
    }
};

 

我们来看一种优化了时间复杂度的方法,这种方法的原理是两行同时遍历,如果两行中相同列位置的值都为1,则计数器cnt自增1,那么最后就相当于有了(cnt - 1)个相邻的格子,问题就转化为了求cnt-1个相邻的格子能组成多少个矩形,就变成了初中数学问题了,共有cnt*(cnt-1)/2个,参见代码如下:

 

解法二:

class Solution {
public:
    int countCornerRectangles(vector<vector<int>>& grid) {
        int m = grid.size(), n = grid[0].size(), res = 0;
        for (int i = 0; i < m; ++i) {
            for (int j = i + 1; j < m; ++j) {
                int cnt = 0;
                for (int k = 0; k < n; ++k) {
                    if (grid[i][k] == 1 && grid[j][k] == 1) ++cnt;
                }
                res += cnt * (cnt - 1) / 2;
            }
        }
        return res;
    }
};

 

下面这种解法由热心网友edyyy提供,最大亮点是将解法二的beat 65%提高到了beat 97%,速度杠杠的,要飞起来了的节奏。在遍历前一行的时候,将所有为1的位置存入到了一个数组ones中,然后在遍历其他行时,直接检测ones数组中的那些位置是否为1,这样省去了检查一些之前行为0的步骤,提高了运行速度,但是也牺牲了一些空间,比如需要ones数组,算是个trade off吧,参见代码如下:

 

解法三:

class Solution {
public:
    int countCornerRectangles(vector<vector<int>>& grid) {
        int m = grid.size(), n = grid[0].size(), res = 0;
        for (int i = 0; i < m - 1; i++) { 
            vector<int> ones;
            for (int k = 0; k < n; k++) if (grid[i][k]) ones.push_back(k);
            for (int j = i + 1; j < m; j++) {
                int cnt = 0;
                for (int l = 0; l < ones.size(); l++) {
                    if (grid[j][ones[l]]) cnt++;
                }
                res += cnt * (cnt - 1) / 2;
            }           
        }
        return res;
    }
};

 

参考资料:

https://discuss.leetcode.com/topic/114177/short-java-ac-solution-o-m-2-n-with-explanation

 

LeetCode All in One 题目讲解汇总(持续更新中...)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant