You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
You are given an m x ngrid where each cell can have one of three values:
0 representing an empty cell,
1 representing a fresh orange, or
2 representing a rotten orange.
Every minute, any fresh orange that is 4-directionally adjacent to a rotten orange becomes rotten.
Return the minimum number of minutes that must elapse until no cell has a fresh orange. If this is impossible, return-1.
Example 1:
Input: grid = [[2,1,1],[1,1,0],[0,1,1]]
Output: 4
Example 2:
Input: grid = [[2,1,1],[0,1,1],[1,0,1]]
Output: -1
Explanation: The orange in the bottom left corner (row 2, column 0) is never rotten, because rotting only happens 4-directionally.
Example 3:
Input: grid = [[0,2]]
Output: 0
Explanation: Since there are already no fresh oranges at minute 0, the answer is just 0.
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 10
grid[i][j] is 0, 1, or 2.
这道题说给的一个 mxn 大小的格子上有些新鲜和腐烂的橘子,每一分钟腐烂的橘子都会传染给其周围四个中的新鲜橘子,使得其也变得腐烂。现在问需要多少分钟可以使得所有的新鲜橘子都变腐烂,无法做到时返回 -1。由于这里新鲜的橘子自己不会变腐烂,只有被周围的腐烂橘子传染才会,所以当新鲜橘子周围不会出现腐烂橘子的时候,那么这个新鲜橘子就不会腐烂,这才会有返回 -1 的情况。这道题就是个典型的广度优先遍历 Breadth First Search,并没有什么太大的难度,先遍历一遍整个二维数组,统计出所有新鲜橘子的个数,并把腐烂的橘子坐标放入一个队列 queue,之后进行 while 循环,循环条件是队列不会空,且 freshLeft 大于0,使用层序遍历的方法,用个 for 循环在内部。每次取出队首元素,遍历其周围四个位置,越界或者不是新鲜橘子都跳过,否则将新鲜橘子标记为腐烂,加入队列中,并且 freshLeft 自减1。每层遍历完成之后,结果 res 自增1,最后返回的时候,若还有新鲜橘子,即 freshLeft 大于0时,返回 -1,否则返回 res 即可,参见代码如下:
class Solution {
public:
int orangesRotting(vector<vector<int>>& grid) {
int res = 0, m = grid.size(), n = grid[0].size(), freshLeft = 0;
queue<vector<int>> q;
vector<vector<int>> dirs{{-1, 0}, {0, 1}, {1, 0}, {0, -1}};
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == 1) ++freshLeft;
else if (grid[i][j] == 2) q.push({i, j});
}
}
while (!q.empty() && freshLeft > 0) {
for (int i = q.size(); i > 0; --i) {
auto cur = q.front(); q.pop();
for (int k = 0; k < 4; ++k) {
int x = cur[0] + dirs[k][0], y = cur[1] + dirs[k][1];
if (x < 0 || x >= m || y < 0 || y >= n || grid[x][y] != 1) continue;
grid[x][y] = 2;
q.push({x, y});
--freshLeft;
}
}
++res;
}
return freshLeft > 0 ? -1 : res;
}
};
You are given an
m x n
grid
where each cell can have one of three values:0
representing an empty cell,1
representing a fresh orange, or2
representing a rotten orange.Every minute, any fresh orange that is 4-directionally adjacent to a rotten orange becomes rotten.
Return the minimum number of minutes that must elapse until no cell has a fresh orange. If this is impossible, return
-1
.Example 1:
Example 2:
Example 3:
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 10
grid[i][j]
is0
,1
, or2
.这道题说给的一个
mxn
大小的格子上有些新鲜和腐烂的橘子,每一分钟腐烂的橘子都会传染给其周围四个中的新鲜橘子,使得其也变得腐烂。现在问需要多少分钟可以使得所有的新鲜橘子都变腐烂,无法做到时返回 -1。由于这里新鲜的橘子自己不会变腐烂,只有被周围的腐烂橘子传染才会,所以当新鲜橘子周围不会出现腐烂橘子的时候,那么这个新鲜橘子就不会腐烂,这才会有返回 -1 的情况。这道题就是个典型的广度优先遍历 Breadth First Search,并没有什么太大的难度,先遍历一遍整个二维数组,统计出所有新鲜橘子的个数,并把腐烂的橘子坐标放入一个队列 queue,之后进行 while 循环,循环条件是队列不会空,且 freshLeft 大于0,使用层序遍历的方法,用个 for 循环在内部。每次取出队首元素,遍历其周围四个位置,越界或者不是新鲜橘子都跳过,否则将新鲜橘子标记为腐烂,加入队列中,并且 freshLeft 自减1。每层遍历完成之后,结果 res 自增1,最后返回的时候,若还有新鲜橘子,即 freshLeft 大于0时,返回 -1,否则返回 res 即可,参见代码如下:Github 同步地址:
#994
类似题目:
Walls and Gates
参考资料:
https://leetcode.com/problems/rotting-oranges/
https://leetcode.com/problems/rotting-oranges/discuss/238681/Java-Clean-BFS-Solution-with-comments
LeetCode All in One 题目讲解汇总(持续更新中...)
The text was updated successfully, but these errors were encountered: