Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support skipping optimizing chunks but not skipping post optimizing that chunk and some cleanup refactor #19

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
*.pyc
.vscode
.*
__*
output
build
*.egg-info
tensorboard_3d
screenshots
2 changes: 1 addition & 1 deletion gaussian_renderer/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -220,7 +220,7 @@ def render_post(
if pc.skybox_points == 0:
skybox_inds = torch.Tensor([]).long()
else:
skybox_inds = torch.range(pc._xyz.size(0) - pc.skybox_points, pc._xyz.size(0)-1, device="cuda").long()
skybox_inds = torch.arange(pc._xyz.size(0) - pc.skybox_points, pc._xyz.size(0), dtype=torch.long, device="cuda")

means3D = torch.cat((means3D_base, means3D[skybox_inds])).contiguous()
shs = torch.cat((shs_base, shs[skybox_inds])).contiguous()
Expand Down
4 changes: 2 additions & 2 deletions preprocess/auto_reorient.py
Original file line number Diff line number Diff line change
Expand Up @@ -128,8 +128,8 @@ def rotate_camera(qvec, tvec, rot_matrix, upscale):
right = candidates[i] - candidates[j]
right /= np.linalg.norm(right)

up = torch.from_numpy(up).double()
right = torch.from_numpy(right).double()
up = torch.tensor(up, dtype=torch.float64)
right = torch.tensor(right, dtype=torch.float64)

forward = torch.cross(up, right)
forward /= torch.norm(forward, p=2)
Expand Down
10 changes: 5 additions & 5 deletions render_hierarchy.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,11 +33,11 @@ def direct_collate(x):
def render_set(args, scene, pipe, out_dir, tau, eval):
render_path = out_dir

render_indices = torch.zeros(scene.gaussians._xyz.size(0)).int().cuda()
parent_indices = torch.zeros(scene.gaussians._xyz.size(0)).int().cuda()
nodes_for_render_indices = torch.zeros(scene.gaussians._xyz.size(0)).int().cuda()
interpolation_weights = torch.zeros(scene.gaussians._xyz.size(0)).float().cuda()
num_siblings = torch.zeros(scene.gaussians._xyz.size(0)).int().cuda()
render_indices = torch.zeros(scene.gaussians._xyz.size(0), dtype=torch.int, device="cuda")
parent_indices = torch.zeros(scene.gaussians._xyz.size(0), dtype=torch.int, device="cuda")
nodes_for_render_indices = torch.zeros(scene.gaussians._xyz.size(0), dtype=torch.int, device="cuda")
interpolation_weights = torch.zeros(scene.gaussians._xyz.size(0), dtype=torch.float, device="cuda")
num_siblings = torch.zeros(scene.gaussians._xyz.size(0), dtype=torch.int, device="cuda")

psnr_test = 0.0
ssims = 0.0
Expand Down
6 changes: 3 additions & 3 deletions requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -3,10 +3,10 @@ tqdm
joblib
exif
scikit-learn
timm==0.4.5
opencv-python==4.9.0.80
timm
opencv-python
gradio_imageslider
gradio==4.29.0
gradio
matplotlib
submodules/hierarchy-rasterizer
submodules/simple-knn
Expand Down
130 changes: 71 additions & 59 deletions scene/gaussian_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -155,8 +155,8 @@ def create_from_pcd(

self.spatial_lr_scale = spatial_lr_scale

xyz = torch.tensor(np.asarray(pcd.points)).float().cuda()
fused_color = torch.tensor(np.asarray(pcd.colors)).float().cuda()
xyz = torch.tensor(np.asarray(pcd.points), dtype=torch.float, device="cuda")
fused_color = torch.tensor(np.asarray(pcd.colors), dtype=torch.float, device="cuda")

minimum,_ = torch.min(xyz, axis=0)
maximum,_ = torch.max(xyz, axis=0)
Expand All @@ -170,20 +170,20 @@ def create_from_pcd(
self.skybox_points = skybox_points
radius = torch.linalg.norm(maximum - mean)

theta = (2.0 * torch.pi * torch.rand(skybox_points, device="cuda")).float()
phi = (torch.arccos(1.0 - 1.4 * torch.rand(skybox_points, device="cuda"))).float()
skybox_xyz = torch.zeros((skybox_points, 3))
theta = (2.0 * torch.pi * torch.rand(skybox_points, dtype=torch.float, device="cuda"))
phi = (torch.arccos(1.0 - 1.4 * torch.rand(skybox_points, dtype=torch.float, device="cuda")))
skybox_xyz = torch.zeros((skybox_points, 3), device="cuda")
skybox_xyz[:, 0] = radius * 10 * torch.cos(theta)*torch.sin(phi)
skybox_xyz[:, 1] = radius * 10 * torch.sin(theta)*torch.sin(phi)
skybox_xyz[:, 2] = radius * 10 * torch.cos(phi)
skybox_xyz += mean.cpu()
xyz = torch.concat((skybox_xyz.cuda(), xyz))
fused_color = torch.concat((torch.ones((skybox_points, 3)).cuda(), fused_color))
skybox_xyz += mean
xyz = torch.concat((skybox_xyz, xyz))
fused_color = torch.concat((torch.ones((skybox_points, 3), device="cuda"), fused_color))
fused_color[:skybox_points,0] *= 0.7
fused_color[:skybox_points,1] *= 0.8
fused_color[:skybox_points,2] *= 0.95

features = torch.zeros((fused_color.shape[0], 3, (self.max_sh_degree + 1) ** 2)).float().cuda()
features = torch.zeros((fused_color.shape[0], 3, (self.max_sh_degree + 1) ** 2), dtype=torch.float, device="cuda")
features[:, :3, 0 ] = RGB2SH(fused_color)
features[:, 3:, 1:] = 0.0

Expand All @@ -206,13 +206,14 @@ def create_from_pcd(

self.scaffold_points = None
if scaffold_file != "":
scaffold_xyz, features_dc_scaffold, features_extra_scaffold, opacities_scaffold, scales_scaffold, rots_scaffold = self.load_ply_file(scaffold_file + "/point_cloud.ply", 1)
scaffold_xyz = torch.from_numpy(scaffold_xyz).float()
features_dc_scaffold = torch.from_numpy(features_dc_scaffold).permute(0, 2, 1).float()
features_extra_scaffold = torch.from_numpy(features_extra_scaffold).permute(0, 2, 1).float()
opacities_scaffold = torch.from_numpy(opacities_scaffold).float()
scales_scaffold = torch.from_numpy(scales_scaffold).float()
rots_scaffold = torch.from_numpy(rots_scaffold).float()
scaffold_xyz, features_dc_scaffold, features_extra_scaffold, opacities_scaffold, scales_scaffold, rots_scaffold = (
self.load_ply_file(scaffold_file + "/point_cloud.ply", 1))
scaffold_xyz = torch.tensor(scaffold_xyz, dtype=torch.float, device="cuda")
features_dc_scaffold = torch.tensor(features_dc_scaffold, dtype=torch.float, device="cuda").permute(0, 2, 1)
features_extra_scaffold = torch.tensor(features_extra_scaffold, dtype=torch.float, device="cuda").permute(0, 2, 1)
opacities_scaffold = torch.tensor(opacities_scaffold, dtype=torch.float, device="cuda")
scales_scaffold = torch.tensor(scales_scaffold, dtype=torch.float, device="cuda")
rots_scaffold = torch.tensor(rots_scaffold, dtype=torch.float, device="cuda")

with open(scaffold_file + "/pc_info.txt") as f:
skybox_points = int(f.readline())
Expand All @@ -225,26 +226,26 @@ def create_from_pcd(

c = centerline.split(' ')
e = extentline.split(' ')
center = torch.Tensor([float(c[0]), float(c[1]), float(c[2])]).cuda()
extent = torch.Tensor([float(e[0]), float(e[1]), float(e[2])]).cuda()
center = torch.tensor([float(c[0]), float(c[1]), float(c[2])], device="cuda")
extent = torch.tensor([float(e[0]), float(e[1]), float(e[2])], device="cuda")

distances1 = torch.abs(scaffold_xyz.cuda() - center)
distances1 = torch.abs(scaffold_xyz - center)
selec = torch.logical_and(
torch.max(distances1[:,0], distances1[:,1]) > 0.5 * extent[0],
torch.max(distances1[:,0], distances1[:,1]) < 1.5 * extent[0])
selec[:skybox_points] = True

self.scaffold_points = selec.nonzero().size(0)

xyz = torch.concat((scaffold_xyz.cuda()[selec], xyz))
features_dc = torch.concat((features_dc_scaffold.cuda()[selec,0:1,:], features_dc))
xyz = torch.concat((scaffold_xyz[selec], xyz))
features_dc = torch.concat((features_dc_scaffold[selec,0:1,:], features_dc))

filler = torch.zeros((features_extra_scaffold.cuda()[selec,:,:].size(0), 15, 3))
filler[:,0:3,:] = features_extra_scaffold.cuda()[selec,:,:]
features_rest = torch.concat((filler.cuda(), features_rest))
scales = torch.concat((scales_scaffold.cuda()[selec], scales))
rots = torch.concat((rots_scaffold.cuda()[selec], rots))
opacities = torch.concat((opacities_scaffold.cuda()[selec], opacities))
filler = torch.zeros((features_extra_scaffold[selec,:,:].size(0), 15, 3), device="cuda")
filler[:,0:3,:] = features_extra_scaffold[selec,:,:]
features_rest = torch.concat((filler, features_rest))
scales = torch.concat((scales_scaffold[selec], scales))
rots = torch.concat((rots_scaffold[selec], rots))
opacities = torch.concat((opacities_scaffold[selec], opacities))

self._xyz = nn.Parameter(xyz.requires_grad_(True))
self._features_dc = nn.Parameter(features_dc.requires_grad_(True))
Expand Down Expand Up @@ -327,6 +328,13 @@ def create_from_hier(self, path, spatial_lr_scale : float, scaffold_file : str):
self.spatial_lr_scale = spatial_lr_scale

xyz, shs_all, alpha, scales, rots, nodes, boxes = load_hierarchy(path)
xyz = xyz.cuda()
shs_all = shs_all.cuda()
alpha = alpha.cuda()
scales = scales.cuda()
rots = rots.cuda()
nodes = nodes.cuda()
boxes = boxes.cuda()

base = os.path.dirname(path)

Expand All @@ -336,7 +344,7 @@ def create_from_hier(self, path, spatial_lr_scale : float, scaffold_file : str):
int_val = int.from_bytes(bytes[:4], "little", signed="False")
dt = np.dtype(np.int32)
vals = np.frombuffer(bytes[4:], dtype=dt)
self.anchors = torch.from_numpy(vals).long().cuda()
self.anchors = torch.tensor(vals, dtype=torch.long, device="cuda")
except:
print("WARNING: NO ANCHORS FOUND")
self.anchors = torch.Tensor([]).long()
Expand All @@ -347,21 +355,24 @@ def create_from_hier(self, path, spatial_lr_scale : float, scaffold_file : str):
with open(exposure_file, "r") as f:
exposures = json.load(f)

self.pretrained_exposures = {image_name: torch.FloatTensor(exposures[image_name]).requires_grad_(False).cuda() for image_name in exposures}
self.pretrained_exposures = {
image_name: torch.tensor(exposures[image_name], dtype=torch.float, device="cuda", requires_grad=False)
for image_name in exposures}
else:
print(f"No exposure to be loaded at {exposure_file}")
self.pretrained_exposures = None

#retrieve skybox
self.skybox_points = 0
if scaffold_file != "":
scaffold_xyz, features_dc_scaffold, features_extra_scaffold, opacities_scaffold, scales_scaffold, rots_scaffold = self.load_ply_file(scaffold_file + "/point_cloud.ply", 1)
scaffold_xyz = torch.from_numpy(scaffold_xyz).float()
features_dc_scaffold = torch.from_numpy(features_dc_scaffold).permute(0, 2, 1).float()
features_extra_scaffold = torch.from_numpy(features_extra_scaffold).permute(0, 2, 1).float()
opacities_scaffold = torch.from_numpy(opacities_scaffold).float()
scales_scaffold = torch.from_numpy(scales_scaffold).float()
rots_scaffold = torch.from_numpy(rots_scaffold).float()
scaffold_xyz, features_dc_scaffold, features_extra_scaffold, opacities_scaffold, scales_scaffold, rots_scaffold = (
self.load_ply_file(scaffold_file + "/point_cloud.ply", 1))
scaffold_xyz = torch.tensor(scaffold_xyz, dtype=torch.float, device="cuda")
features_dc_scaffold = torch.tensor(features_dc_scaffold, dtype=torch.float, device="cuda").permute(0, 2, 1)
features_extra_scaffold = torch.tensor(features_extra_scaffold, dtype=torch.float, device="cuda").permute(0, 2, 1)
opacities_scaffold = torch.tensor(opacities_scaffold, dtype=torch.float, device="cuda")
scales_scaffold = torch.tensor(scales_scaffold, dtype=torch.float, device="cuda")
rots_scaffold = torch.tensor(rots_scaffold, dtype=torch.float, device="cuda")

with open(scaffold_file + "/pc_info.txt") as f:
skybox_points = int(f.readline())
Expand All @@ -370,50 +381,51 @@ def create_from_hier(self, path, spatial_lr_scale : float, scaffold_file : str):

if self.skybox_points > 0:
if scaffold_file != "":
skybox_xyz, features_dc_sky, features_rest_sky, opacities_sky, scales_sky, rots_sky = scaffold_xyz[:skybox_points], features_dc_scaffold[:skybox_points], features_extra_scaffold[:skybox_points], opacities_scaffold[:skybox_points], scales_scaffold[:skybox_points], rots_scaffold[:skybox_points]
skybox_xyz, features_dc_sky, features_rest_sky, opacities_sky, scales_sky, rots_sky = (
scaffold_xyz[:skybox_points], features_dc_scaffold[:skybox_points], features_extra_scaffold[:skybox_points], opacities_scaffold[:skybox_points], scales_scaffold[:skybox_points], rots_scaffold[:skybox_points])

opacities_sky = torch.sigmoid(opacities_sky)
xyz = torch.cat((xyz, skybox_xyz))
alpha = torch.cat((alpha, opacities_sky))
scales = torch.cat((scales, scales_sky))
rots = torch.cat((rots, rots_sky))
filler = torch.zeros(features_dc_sky.size(0), 16, 3)
filler = torch.zeros(features_dc_sky.size(0), 16, 3, device="cuda")
filler[:, :1, :] = features_dc_sky
filler[:, 1:4, :] = features_rest_sky
shs_all = torch.cat((shs_all, filler))

self._xyz = nn.Parameter(xyz.cuda().requires_grad_(True))
self._features_dc = nn.Parameter(shs_all.cuda()[:,:1,:].requires_grad_(True))
self._features_rest = nn.Parameter(shs_all.cuda()[:,1:16,:].requires_grad_(True))
self._opacity = nn.Parameter(alpha.cuda().requires_grad_(True))
self._scaling = nn.Parameter(scales.cuda().requires_grad_(True))
self._rotation = nn.Parameter(rots.cuda().requires_grad_(True))
self._xyz = nn.Parameter(xyz.requires_grad_(True))
self._features_dc = nn.Parameter(shs_all[:,:1,:].requires_grad_(True))
self._features_rest = nn.Parameter(shs_all[:,1:16,:].requires_grad_(True))
self._opacity = nn.Parameter(alpha.requires_grad_(True))
self._scaling = nn.Parameter(scales.requires_grad_(True))
self._rotation = nn.Parameter(rots.requires_grad_(True))
self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda")

self.opacity_activation = torch.abs
self.inverse_opacity_activation = torch.abs

self.hierarchy_path = path

self.nodes = nodes.cuda()
self.boxes = boxes.cuda()
self.nodes = nodes
self.boxes = boxes

def create_from_pt(self, path, spatial_lr_scale : float ):
self.spatial_lr_scale = spatial_lr_scale

xyz = torch.load(path + "/done_xyz.pt")
shs_dc = torch.load(path + "/done_dc.pt")
shs_rest = torch.load(path + "/done_rest.pt")
alpha = torch.load(path + "/done_opacity.pt")
scales = torch.load(path + "/done_scaling.pt")
rots = torch.load(path + "/done_rotation.pt")

self._xyz = nn.Parameter(xyz.cuda().requires_grad_(True))
self._features_dc = nn.Parameter(shs_dc.cuda().requires_grad_(True))
self._features_rest = nn.Parameter(shs_rest.cuda().requires_grad_(True))
self._opacity = nn.Parameter(alpha.cuda().requires_grad_(True))
self._scaling = nn.Parameter(scales.cuda().requires_grad_(True))
self._rotation = nn.Parameter(rots.cuda().requires_grad_(True))
xyz = torch.load(path + "/done_xyz.pt", map_location="cuda", mmap=True)
shs_dc = torch.load(path + "/done_dc.pt", map_location="cuda", mmap=True)
shs_rest = torch.load(path + "/done_rest.pt", map_location="cuda", mmap=True)
alpha = torch.load(path + "/done_opacity.pt", map_location="cuda", mmap=True)
scales = torch.load(path + "/done_scaling.pt", map_location="cuda", mmap=True)
rots = torch.load(path + "/done_rotation.pt", map_location="cuda", mmap=True)

self._xyz = nn.Parameter(xyz.requires_grad_(True))
self._features_dc = nn.Parameter(shs_dc.requires_grad_(True))
self._features_rest = nn.Parameter(shs_rest.requires_grad_(True))
self._opacity = nn.Parameter(alpha.requires_grad_(True))
self._scaling = nn.Parameter(scales.requires_grad_(True))
self._rotation = nn.Parameter(rots.requires_grad_(True))
self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda")

def save_hier(self):
Expand Down
11 changes: 7 additions & 4 deletions scripts/full_train.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@ def setup_dirs(images, depths, masks, colmap, chunks, output, project):

parser.add_argument('--output_dir', default="")
parser.add_argument('--use_slurm', action="store_true", default=False)
parser.add_argument('--skip_if_exists', action="store_true", default=False, help="Skip training a chunk if it already has a hierarchy")
parser.add_argument('--skip_if_exists', action="store_true", default=True, help="Skip training a chunk if it already has a hierarchy")
parser.add_argument('--keep_running', action="store_true", default=False, help="Keep running even if a chunk processing fails")
args = parser.parse_args()
print(args.extra_training_args)
Expand Down Expand Up @@ -106,7 +106,7 @@ def setup_dirs(images, depths, masks, colmap, chunks, output, project):
])
if masks_dir != "":
train_coarse_args += " --alpha_masks " + masks_dir
if args.extra_training_args != "":
if args.extra_training_args != "":
train_coarse_args += " " + args.extra_training_args

try:
Expand Down Expand Up @@ -156,7 +156,7 @@ def setup_dirs(images, depths, masks, colmap, chunks, output, project):
source_chunk = os.path.join(chunks_dir, chunk_name)
trained_chunk = os.path.join(output_dir, "trained_chunks", chunk_name)

if args.skip_if_exists and os.path.exists(os.path.join(trained_chunk, "hierarchy.hier_opt")):
if args.skip_if_exists and os.path.exists(os.path.join(trained_chunk, "hierarchy.hier")):
print(f"Skipping {chunk_name}")
else:
## Training can be done in parallel using slurm.
Expand Down Expand Up @@ -200,11 +200,14 @@ def setup_dirs(images, depths, masks, colmap, chunks, output, project):
if not args.keep_running:
sys.exit(1)

if args.skip_if_exists and os.path.exists(os.path.join(trained_chunk, "hierarchy.hier_opt")):
print(f"Skipping {chunk_name}")
else:
# Post optimization on each chunks
print(f"post optimizing chunk {chunk_name}")
try:
subprocess.run(
post_opt_chunk_args + " -s "+ source_chunk +
post_opt_chunk_args + " -s "+ source_chunk +
" --model_path " + trained_chunk +
" --hierarchy " + os.path.join(trained_chunk, "hierarchy.hier"),
shell=True, check=True
Expand Down
2 changes: 1 addition & 1 deletion submodules/gaussianhierarchy
2 changes: 1 addition & 1 deletion submodules/hierarchy-rasterizer
2 changes: 1 addition & 1 deletion submodules/simple-knn
Submodule simple-knn updated from 86710c to b38f37
Loading