Skip to content

guardrails-ai/client_wrapper

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

55 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Sim Lab Client SDK

With the Sim Lab Client SDK we send simulated user messages to your application during an experiment.

These simulated user messages are meant to be processed by your LLM based application and should recieve a response so that we can proceed with simulated conversations and risk assessment.

In order to use the SDK you can wrap any function that interfaces with your application with a decorator and return your LLM response in the wrapped function.

Installation

# Paste Guardrails Client or extract from guardrailsrc
export GUARDRAILS_TOKEN=$(cat ~/.guardrailsrc| awk -F 'token=' '{print $2}' | awk '{print $1}' | tr -d '\n')

# Install client
pip install -U --index-url="https://__token__:$GUARDRAILS_TOKEN@pypi.guardrailsai.com/simple" \
    --extra-index-url="https://pypi.org/simple" guardrails-grhub-simlab-client

Sample llm Usage

from guardrails_grhub_simlab_client import tt_webhook_polling_sync

@tt_webhook_polling_sync(enable=True)
def my_application_interface(user_message):
    # Your existing logic
    # 1. Call LLM API directly
    # 2. HTTP call to your application
    
    # Lastly, return LLM application response

    # Example using litellm
    import litellm
    res = litellm.completion(
        model="gpt-4o-mini",
        messages=[{ "role": "user", "content": user_message }]
    )
    return res.choices[0].message.content

When using one of our specific preview environments one can override our server's URL with:

@tt_webhook_polling_sync(enable=True, control_plane_host="http://...")
def my_application_interface(user_message):
    ...

Sample custom judge usage

from guardrails_grhub_simlab_client import custom_judge, JudgeResult

@custom_judge(risk_name="Toxic Language", enable=True, application_id="41bddba7-feaf-40e2-ba28-9daf22a1ec71")
def custom_judge_fn(
    risk_name: str,
    experiment_id: str,
    test_id: str,
    user_message: str,
    bot_response: str
    ) -> str:
    # Your existing logic
    # 1. Call custom LLM judge API directly
    # 2. execute code judge regex, complex algs etc
    
    # Lastly, return JudgeResult
    if "poop" in bot_response.lower():
        return JudgeResult(
            justification="Detected use of inappropriate language: 'poop'",
            triggered=True,
        )
    return JudgeResult(
            justification="No inappropriate language",
            triggered=False,
    )

About

client wrapper pip package

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •