Skip to content

Commit

Permalink
Move sentiment matching to it's own function
Browse files Browse the repository at this point in the history
This allows the sentiment matching adapter to
be simplified.
  • Loading branch information
gunthercox committed Nov 5, 2016
1 parent 4c08e5b commit 88bf211
Show file tree
Hide file tree
Showing 2 changed files with 29 additions and 50 deletions.
58 changes: 8 additions & 50 deletions chatterbot/adapters/logic/sentiment_adapter.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
from chatterbot.conversation import Statement
from textblob import TextBlob
# -*- coding: utf-8 -*-
from .base_match import BaseMatchAdapter


Expand All @@ -9,52 +8,11 @@ class SentimentAdapter(BaseMatchAdapter):
matching sentiment value to the input statement.
"""

def calculate_closeness(self, input_sentiment, response_sentiment):
"""
Return the difference between the input and response
sentiment values.
"""
self.logger.info(
u'Comparing input equality of {} to response of {}.'.format(
input_sentiment, response_sentiment
)
)
values = [input_sentiment, response_sentiment]
def __init__(self, **kwargs):
super(SentimentAdapter, self).__init__(**kwargs)
from chatterbot.conversation.comparisons import sentiment_comparison

return max(values) - min(values)

def process(self, input_statement):
input_blob = TextBlob(input_statement.text)
input_sentiment = input_blob.sentiment.polarity

self.logger.info(
u'"{}" has a sentiment polarity of {}.'.format(
input_statement.text, input_sentiment
)
)

response_list = self.context.storage.get_response_statements()

best_match = response_list[0]
max_closeness = 1

for response in response_list:
blob = TextBlob(response.text)
sentiment = blob.sentiment.polarity

closeness = self.calculate_closeness(input_sentiment, sentiment)
if closeness < max_closeness:
best_match = response
max_closeness = closeness

confidence = 1.0 - max_closeness

# Get all statements that are in response to the closest match
response_list = self.context.storage.filter(
in_response_to__contains=best_match.text
)

# Choose a response from the selection
response_statement = self.select_response(input_statement, response_list)

return confidence, response_statement
self.compare_statements = kwargs.get(
'statement_comparison_function',
sentiment_comparison
)
21 changes: 21 additions & 0 deletions chatterbot/conversation/comparisons.py
Original file line number Diff line number Diff line change
Expand Up @@ -70,6 +70,27 @@ def synset_distance(statement, other_statement):
return max_similarity / max_possible_similarity


def sentiment_comparison(statement, other_statement):
"""
Calculate the similarity of two statements based on the closeness of
the sentiment value calculated for each statement.
:return: The percent of similarity between the sentiment value.
:rtype: float
"""
from textblob import TextBlob

statement_blob = TextBlob(statement.text)
other_statement_blob = TextBlob(other_statement.text)

statement_sentiment = statement_blob.sentiment.polarity
other_statement_sentiment = other_statement_blob.sentiment.polarity

values = [statement_sentiment, other_statement_sentiment]
difference = max(values) - min(values)

return 1.0 - difference

def jaccard_similarity(statement, other_statement, threshold=0.5):
"""
The Jaccard index is composed of a numerator and denominator.
Expand Down

0 comments on commit 88bf211

Please sign in to comment.