Skip to content

harunkurtdev/dart_opencv_sdk

Repository files navigation

OpenCV SDK for Dart

The OpenCV SDK for Dart is a powerful and versatile computer vision library that allows developers to integrate OpenCV functionality into their Dart applications. This SDK provides a bridge between Dart and the OpenCV library, enabling you to leverage advanced computer vision techniques seamlessly.

Features

  • High-Performance: Benefit from the high-performance capabilities of the OpenCV library directly from your Dart applications.

  • Wide Range of Algorithms: Access a comprehensive collection of image processing and computer vision algorithms, including filtering, feature detection, object tracking, and more.

  • Easy Integration: The SDK provides a user-friendly interface to easily integrate OpenCV functionalities into your Dart projects.

TODO

TODO:

  • Image Reading and Writing:

    • Read image: imread()
    • Write image: imwrite()
  • Image Properties:

    • Get image size: size()
    • Determine image type: type()
    • Access and modify pixel values on the image: at(), set()
  • Morphological Operation:

    • Eroding
    • Dilate
  • Color Conversions:

    • Convert color spaces: cvtColor() for grayscale
    • Define constants for color space conversions: COLOR_*
  • Filtering and Edge Detection:

    • Gaussian blur: GaussianBlur()
    • Average blur: Average()
    • Bileteral blur: Bileteral()
    • Average blur: Average()
    • Median blur: medianBlur()
  • Edge Detection:

    • Edge detection: Canny()
    • Laplace: Laplace()
    • Sobel: Sobel()
  • Geometric Transformations:

    • Perspective transformation: warpPerspective()
    • Scaling: resize()
    • Rotation: rotate()
  • Hough Detection Transformations:

    • Hough Circle:
    • Hough Line:
  • Template Matching:

    • Template matching operation: matchTemplate()
  • Contour Detection:

    • Contour detection: findContours()
    • Compute contour properties: contourArea(), arcLength(), boundingRect()
  • Object Detection:

    • Face detection: CascadeClassifier()
    • Object detection: detectMultiScale()
  • Computational Operations:

    • Mathematical operations: add(), subtract(), multiply(), divide()
    • Histogram calculation: calcHist()
  • Image Processing Helpers:

    • Bitwise masking operations: bitwise_and(), bitwise_or(), bitwise_not()
    • Splitting and merging images: split(), merge()
    • Defining Regions of Interest (ROI): Rect()
  • Graphical User Interface (GUI) Helpers:

    • Display image on the screen: imshow()
    • Detect keyboard or mouse interactions: waitKey()

Usage

TODO: Include short and useful examples for package users. Add longer examples to /example folder.