Skip to content

harvard-cns/teal

Repository files navigation

Teal: Traffic Engineering Accelerated by Learning

Teal is a learning-accelerated traffic engineering (TE) algorithm for cloud wide-area networks (WANs), published at ACM SIGCOMM '23. By harnessing the parallel processing power of GPUs, Teal achieves unprecedented acceleration of TE control, surpassing production TE solvers by several orders of magnitude while retaining near-optimal flow allocations.

Getting started

Hardware requirements

  • Linux OS (tested on Ubuntu 20.04, 22.04, and CentOS 7)
  • A CPU instance with 16+ cores
  • (Optional*) A GPU instance with 24+ GB memory and CUDA installed

*The baseline TE schemes only require a CPU to run. Teal runs on CPU as well, but its runtime will be significantly longer than on GPU.

Cloning Teal with submodules

  • git clone https://github.com/harvard-cns/teal.git
  • cd teal and update git submodules with git submodule update --init --recursive

Dependencies

  • Run conda env create -f environment.yml to create a Conda environment with essential Python dependencies
  • Run conda activate teal to activate the Conda environment. All the following steps related to Python (e.g., pip and python commands) must be performed within this Conda environment to ensure correct Python dependencies.
  • Run pip install -r requirements.txt to install additional Python dependencies

Dependencies only required for baselines

  • Install make
    • e.g., sudo apt install build-essential on Ubuntu
  • Acquire a Gurobi license from Gurobi and activate it with grbgetkey [gurobi-license]
    • Run gurobi_cl to verify the activation

Dependencies only required for Teal

  • If on a GPU instance, run nvcc --version to identify the installed version of CUDA
    • Note: when following the next steps to install torch, torch-scatter, and torch-sparse, it might be fine to select a version that supports a different CUDA version than the output of nvcc, provided that this CUDA version is supported by the GPU driver (as shown in nvidia-smi).
  • Follow the official instructions to install PyTorch via pip based on the execution environment (CPU, or GPU with a specific version of CUDA).
    • Example: Install PyTorch 1.10.1 for CUDA 11.1 on a GPU instance:
      pip install torch==1.10.1+cu111 torchvision==0.11.2+cu111 torchaudio==0.10.1 -f https://download.pytorch.org/whl/cu111/torch_stable.html
      
      Run python -c "import torch; print(torch.cuda.is_available())" to verify the installation.
    • Example: Install PyTorch 1.10.1 on a CPU instance:
      pip install torch==1.10.1+cpu torchvision==0.11.2+cpu torchaudio==0.10.1 -f https://download.pytorch.org/whl/cpu/torch_stable.html
      
      Run python -c "import torch; print(torch.__version__)" to verify the installation.
  • Install PyTorch extension libraries torch-scatter and torch-sparse:
    • First, identify the appropriate archive URL here based on PyTorch and CUDA versions. E.g., copy the link of torch-1.10.1+cu111 for PyTorch 1.10.1 and CUDA 11.1.
    • Run pip install --no-index torch-scatter torch-sparse -f [archive URL], replacing [archive URL] with the copied archive URL.
    • Example: On a GPU instance with PyTorch 1.10.1 and CUDA 11.1:
      pip install --no-index torch-scatter torch-sparse -f https://data.pyg.org/whl/torch-1.10.1%2Bcu111.html`
      
    • Example: On a CPU instance with PyTorch 1.10.1:
      pip install --no-index torch-scatter torch-sparse -f https://data.pyg.org/whl/torch-1.10.1%2Bcpu.html
      
    • Run python -c "import torch_scatter; print(torch_scatter.__version__)" and python -c "import torch_sparse; print(torch_sparse.__version__)" to verify the installation.
    • Troubleshooting: refer to the Installation from Source section.

Code structure

.
├── lib                     # source code for Teal (details in lib/README.md)
├── pop-ncflow-lptop        # submodule for baselines
│   ├── benchmarks          # test code for baselines
│   ├── ext                 # external code for baselines
│   └── lib                 # source code for baselines
├── run                     # test code for Teal
├── topologies              # network topologies with link capacity (e.g. `B4.json`)
│   └── paths               # paths in topologies (auto-generated if not existent)
└── traffic-matrices        # TE traffic matrices
    ├── real                # real traffic matrices from abilene.txt in Yates (https://github.com/cornell-netlab/yates)
    │                       # (e.g. `B4.json_real_0_1.0_traffic-matrix.pkl`)
    └── toy                 # toy traffic matrices (e.g. `ASN2k.json_toy_0_1.0_traffic-matrix.pkl`)

Note: As we are not allowed to share the proprietary traffic data from Microsoft WAN (or the Teal model trained on that data), we mapped the publicly accessible Yates traffic data to the B4 topology to facilitate code testing. For the other topologies (UsCarrier, Kdl, and ASN), we synthetically generated "toy" traffic matrices due to their larger sizes.

Evaluating Teal

To evaluate Teal on the B4 topology:

$ cd ./run
$ python teal.py --obj total_flow --topo B4.json --epochs 3 --admm-steps 2
Loading paths from pickle file ~/teal/topologies/paths/path-form/B4.json-4-paths_edge-disjoint-True_dist-metric-min-hop-dict.pkl
path_dict size: 132
Creating model teal-models/B4.json_flowGNN-6_std-False.pt
Training epoch 0/3: 100%|█████████████████████████████████| 1/1 [00:01<00:00,  1.63s/it]
Training epoch 1/3: 100%|█████████████████████████████████| 1/1 [00:00<00:00,  2.45it/s]
Training epoch 2/3: 100%|█████████████████████████████████| 1/1 [00:00<00:00,  2.61it/s]
Testing: 100%|████████████████| 8/8 [00:00<00:00, 38.06it/s, runtime=0.0133, obj=0.9537]

To show explanations on the input parameters:

$ python teal.py --help

Results will be saved in

  • teal-total_flow-all.csv: performance numbers
  • teal-logs: directory with TE solution matrices
  • teal-models: directory to save the trained models when --model-save True

Realistic traffic matrices are only available for B4 (please refer to the note above). For the other topologies — UsCarrier (UsCarrier.json), Kdl (Kdl.json), or ASN (ASN2k.json), use the "toy" traffic matrices we generated (taking UsCarrier as an example):

$ python teal.py --obj total_flow --topo UsCarrier.json --tm-model toy --epochs 3 --admm-steps 2

Evaluating baselines

Teal is compared with the following baselines:

To evaluate the baselines on B4, run the following commands from the project root:

$ cd ./pop-ncflow-lptop/benchmarks
$ python path_form.py --obj total_flow --topos B4.json
$ python top_form.py --obj total_flow --topos B4.json
$ python ncflow.py --obj total_flow --topos B4.json
$ python pop.py --obj total_flow --topos B4.json --algo-cls PathFormulation --split-fractions 0.25 --num-subproblems 4

Results will be saved in

  • path-form-total_flow-all.csv, top-form-total_flow-all.csv, ncflow-total_flow-all.csv, pop-total_flow-all.csv: performance numbers
  • path-form-logs, top-form-logs, ncflow-logs, pop-logs: directory with TE solution matrices

To test on UsCarrier (UsCarrier.json), Kdl (Kdl.json), or ASN (ASN2k.json), specify the "toy" traffic matrices we generated (taking UsCarrier as an example):

$ python path_form.py --obj total_flow --tm-models toy --topos UsCarrier.json
$ python top_form.py --obj total_flow --tm-models toy --topos UsCarrier.json
$ python ncflow.py --obj total_flow --tm-models toy --topos UsCarrier.json
$ python pop.py --obj total_flow --tm-models toy --topos UsCarrier.json --algo-cls PathFormulation --split-fractions 0.25 --num-subproblems 4

Extending Teal

To add another TE implementation to this repo,

  • If the implementation is based on linear programming or Gurobi, add test code to ./pop-ncflow-lptop/benchmarks/ and source code to ./pop-ncflow-lptop/lib/algorithms. Code in ./pop-ncflow-lptop/lib (e.g., lp_solver.py, traffic_matrix.py) and ./pop-ncflow-lptop/benchmarks (e.g., benchmark_helpers.py) is reusable.
  • If the implementation is based on machine learning, add test code to ./run/ and source code to ./lib/. Code in ./lib/ (e.g., teal_env.py, utils.py) and ./run/ (e.g., teal_helpers.py) is reusable.

Citation

If you use our code in your research, please cite our paper:

@inproceedings{teal,
    title={Teal: Learning-Accelerated Optimization of WAN Traffic Engineering},
    author={Xu, Zhiying and Yan, Francis Y. and Singh, Rachee and Chiu, Justin T. and Rush, Alexander M. and Yu, Minlan},
    booktitle={Proceedings of the ACM SIGCOMM 2023 Conference},
    pages={378--393},
    month=sep,
    year={2023}
}