Skip to content

Commit

Permalink
Add strictness tests for Map construction
Browse files Browse the repository at this point in the history
This aims to reduce the chance of introducing strictness bugs.
Since we use the same Map type for lazy and strict maps, it is not
possible to ensure appropriate strictness at the type level. So we turn
to property tests.

Arbitrary Set and Map generation is moved from set-properties.hs and
map-properties.hs to ArbitrarySetMap.hs to be shared with the new
strictness tests.
  • Loading branch information
meooow25 committed Oct 31, 2024
1 parent 9a9e210 commit b6fee41
Show file tree
Hide file tree
Showing 6 changed files with 1,441 additions and 166 deletions.
12 changes: 11 additions & 1 deletion containers-tests/containers-tests.cabal
Original file line number Diff line number Diff line change
Expand Up @@ -270,6 +270,9 @@ test-suite map-lazy-properties
main-is: map-properties.hs
type: exitcode-stdio-1.0

other-modules:
Utils.ArbitrarySetMap

ghc-options: -O2
other-extensions:
BangPatterns
Expand All @@ -283,6 +286,9 @@ test-suite map-strict-properties
type: exitcode-stdio-1.0
cpp-options: -DSTRICT

other-modules:
Utils.ArbitrarySetMap

ghc-options: -O2
other-extensions:
BangPatterns
Expand All @@ -306,6 +312,9 @@ test-suite set-properties
main-is: set-properties.hs
type: exitcode-stdio-1.0

other-modules:
Utils.ArbitrarySetMap

ghc-options: -O2
other-extensions:
BangPatterns
Expand Down Expand Up @@ -404,7 +413,8 @@ test-suite map-strictness-properties
CPP

other-modules:
Utils.IsUnit
Utils.ArbitrarySetMap
Utils.Strictness

if impl(ghc >= 8.6)
build-depends:
Expand Down
117 changes: 117 additions & 0 deletions containers-tests/tests/Utils/ArbitrarySetMap.hs
Original file line number Diff line number Diff line change
@@ -0,0 +1,117 @@
module Utils.ArbitrarySetMap
(
-- MonadGen
MonadGen(..)

-- Set
, mkArbSet
, setFromList

-- Map
, mkArbMap
, mapFromKeysList
) where

import Control.Monad (liftM, liftM3, liftM4)
import Control.Monad.Trans.State.Strict
import Control.Monad.Trans.Class
import qualified Data.List as List
import Data.Maybe (fromMaybe)
import Test.QuickCheck

import Data.Set (Set)
import qualified Data.Set.Internal as S
import Data.Map (Map)
import qualified Data.Map.Internal as M

{--------------------------------------------------------------------
MonadGen
--------------------------------------------------------------------}

class Monad m => MonadGen m where
liftGen :: Gen a -> m a
instance MonadGen Gen where
liftGen = id
instance MonadGen m => MonadGen (StateT s m) where
liftGen = lift . liftGen

{--------------------------------------------------------------------
Set
--------------------------------------------------------------------}

-- | Given an action that produces successively larger elements and
-- a size, produce a set of arbitrary shape with exactly that size.
mkArbSet :: MonadGen m => m a -> Int -> m (Set a)
mkArbSet step n
| n <= 0 = return S.Tip
| n == 1 = S.singleton `liftM` step
| n == 2 = do
dir <- liftGen arbitrary
p <- step
q <- step
if dir
then return (S.Bin 2 q (S.singleton p) S.Tip)
else return (S.Bin 2 p S.Tip (S.singleton q))
| otherwise = do
-- This assumes a balance factor of delta = 3
let upper = (3*(n - 1)) `quot` 4
let lower = (n + 2) `quot` 4
ln <- liftGen $ choose (lower, upper)
let rn = n - ln - 1
liftM3
(\lt x rt -> S.Bin n x lt rt)
(mkArbSet step ln)
step
(mkArbSet step rn)
{-# INLINABLE mkArbSet #-}

-- | Given a strictly increasing list of elements, produce an arbitrarily
-- shaped set with exactly those elements.
setFromList :: [a] -> Gen (Set a)
setFromList xs = flip evalStateT xs $ mkArbSet step (length xs)
where
step = state $ fromMaybe (error "setFromList") . List.uncons

{--------------------------------------------------------------------
Map
--------------------------------------------------------------------}

-- | Given an action that produces successively larger keys and
-- a size, produce a map of arbitrary shape with exactly that size.
mkArbMap :: (MonadGen m, Arbitrary v) => m k -> Int -> m (Map k v)
mkArbMap step n
| n <= 0 = return M.Tip
| n == 1 = do
k <- step
v <- liftGen arbitrary
return (M.singleton k v)
| n == 2 = do
dir <- liftGen arbitrary
p <- step
q <- step
vOuter <- liftGen arbitrary
vInner <- liftGen arbitrary
if dir
then return (M.Bin 2 q vOuter (M.singleton p vInner) M.Tip)
else return (M.Bin 2 p vOuter M.Tip (M.singleton q vInner))
| otherwise = do
-- This assumes a balance factor of delta = 3
let upper = (3*(n - 1)) `quot` 4
let lower = (n + 2) `quot` 4
ln <- liftGen $ choose (lower, upper)
let rn = n - ln - 1
liftM4
(\lt x v rt -> M.Bin n x v lt rt)
(mkArbMap step ln)
step
(liftGen arbitrary)
(mkArbMap step rn)
{-# INLINABLE mkArbMap #-}

-- | Given a strictly increasing list of keys, produce an arbitrarily
-- shaped map with exactly those keys.
mapFromKeysList :: Arbitrary a => [k] -> Gen (Map k a)
mapFromKeysList xs = flip evalStateT xs $ mkArbMap step (length xs)
where
step = state $ fromMaybe (error "mapFromKeysList") . List.uncons
{-# INLINABLE mapFromKeysList #-}
116 changes: 116 additions & 0 deletions containers-tests/tests/Utils/Strictness.hs
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@
module Utils.Strictness
( Bot(..)
, Func
, applyFunc
, Func2
, applyFunc2
, Func3
, applyFunc3
) where

import Test.ChasingBottoms.IsBottom (isBottom)
import Test.QuickCheck

{--------------------------------------------------------------------
Bottom stuff
--------------------------------------------------------------------}

-- | Arbitrary (Bot a) values may be bottom.
newtype Bot a = Bot a

instance Show a => Show (Bot a) where
show (Bot x) = if isBottom x then "<bottom>" else show x

instance Arbitrary a => Arbitrary (Bot a) where
arbitrary = frequency
[ (1, pure (error "<bottom>"))
, (4, Bot <$> arbitrary)
]

{--------------------------------------------------------------------
Lazy functions
--------------------------------------------------------------------}

-- | A function which may be lazy in its argument.
--
-- Either ignores its argument, or uses a QuickCheck Fun (which is always a
-- strict function).
data Func a b
= FuncLazy b
| FuncStrict (Fun a b)

instance (Show a, Show b) => Show (Func a b) where
show (FuncLazy x) = "{_lazy->" ++ show x ++ "}"
show (FuncStrict fun) = show fun

applyFunc :: Func a b -> a -> b
applyFunc fun x = case fun of
FuncLazy y -> y
FuncStrict f -> applyFun f x

instance (CoArbitrary a, Function a, Arbitrary b) => Arbitrary (Func a b) where
arbitrary = frequency
[ (1, FuncLazy <$> arbitrary)
, (4, FuncStrict <$> arbitrary)
]

shrink fun = case fun of
FuncLazy x -> FuncLazy <$> shrink x
FuncStrict f -> FuncStrict <$> shrink f

-- | A function which may be lazy in its arguments.

-- Note: We have two separate cases here because we want to generate functions
-- of type `a -> b -> c` with all possible strictness configurations.
-- `Func a (Func b c)` is not enough for this, since it cannot generate
-- functions that are conditionally lazy in the first argument, for instance:
--
-- leftLazyOr :: Bool -> Bool -> Bool
-- leftLazyOr a b = if b then True else a

data Func2 a b c
= F2A (Func a (Func b c))
| F2B (Func b (Func a c))
deriving Show

instance
(CoArbitrary a, Function a, CoArbitrary b, Function b, Arbitrary c)
=> Arbitrary (Func2 a b c) where
arbitrary = oneof [F2A <$> arbitrary, F2B <$> arbitrary]

shrink fun2 = case fun2 of
F2A fun -> F2A <$> shrink fun
F2B fun -> F2B <$> shrink fun

applyFunc2 :: Func2 a b c -> a -> b -> c
applyFunc2 fun2 x y = case fun2 of
F2A fun -> applyFunc (applyFunc fun x) y
F2B fun -> applyFunc (applyFunc fun y) x

-- | A function which may be lazy in its arguments.

-- See Note on Func2.
data Func3 a b c d
= F3A (Func a (Func2 b c d))
| F3B (Func b (Func2 a c d))
| F3C (Func c (Func2 a b d))
deriving Show

instance
( CoArbitrary a, Function a
, CoArbitrary b, Function b
, CoArbitrary c, Function c
, Arbitrary d
) => Arbitrary (Func3 a b c d) where
arbitrary = oneof [F3A <$> arbitrary, F3B <$> arbitrary, F3C <$> arbitrary]

shrink fun3 = case fun3 of
F3A fun -> F3A <$> shrink fun
F3B fun -> F3B <$> shrink fun
F3C fun -> F3C <$> shrink fun

applyFunc3 :: Func3 a b c d -> a -> b -> c -> d
applyFunc3 fun3 x y z = case fun3 of
F3A fun -> applyFunc2 (applyFunc fun x) y z
F3B fun -> applyFunc2 (applyFunc fun y) x z
F3C fun -> applyFunc2 (applyFunc fun z) x y
42 changes: 5 additions & 37 deletions containers-tests/tests/map-properties.hs
Original file line number Diff line number Diff line change
Expand Up @@ -7,13 +7,13 @@ import Data.Map.Merge.Strict
import Data.Map.Lazy as Data.Map
import Data.Map.Merge.Lazy
#endif
import Data.Map.Internal (Map (..), link2, link, bin)
import Data.Map.Internal (Map, link2, link)
import Data.Map.Internal.Debug (showTree, showTreeWith, balanced)

import Control.Applicative (Const(Const, getConst), pure, (<$>), (<*>))
import Control.Monad.Trans.State.Strict
import Control.Monad.Trans.Class
import Control.Monad (liftM4, (<=<))
import Control.Monad ((<=<))
import Data.Functor.Identity (Identity(Identity, runIdentity))
import Data.Monoid
import Data.Maybe hiding (mapMaybe)
Expand All @@ -36,7 +36,8 @@ import Test.Tasty.HUnit
import Test.Tasty.QuickCheck
import Test.QuickCheck.Function (apply)
import Test.QuickCheck.Poly (A, B, OrdA)
import Control.Arrow (first)

import Utils.ArbitrarySetMap (mkArbMap)

default (Int)

Expand Down Expand Up @@ -305,7 +306,7 @@ instance (IsInt k, Arbitrary v) => Arbitrary (Map k v) where
middle <- choose (-positionFactor * (sz + 1), positionFactor * (sz + 1))
let shift = (sz * (gapRange) + 1) `quot` 2
start = middle - shift
t <- evalStateT (mkArb step sz) start
t <- evalStateT (mkArbMap step sz) start
if valid t then pure t else error "Test generated invalid tree!")
where
step = do
Expand All @@ -315,39 +316,6 @@ instance (IsInt k, Arbitrary v) => Arbitrary (Map k v) where
put i'
pure (fromInt i')

class Monad m => MonadGen m where
liftGen :: Gen a -> m a
instance MonadGen Gen where
liftGen = id
instance MonadGen m => MonadGen (StateT s m) where
liftGen = lift . liftGen

-- | Given an action that produces successively larger keys and
-- a size, produce a map of arbitrary shape with exactly that size.
mkArb :: (MonadGen m, Arbitrary v) => m k -> Int -> m (Map k v)
mkArb step n
| n <= 0 = return Tip
| n == 1 = do
k <- step
v <- liftGen arbitrary
return (singleton k v)
| n == 2 = do
dir <- liftGen arbitrary
p <- step
q <- step
vOuter <- liftGen arbitrary
vInner <- liftGen arbitrary
if dir
then return (Bin 2 q vOuter (singleton p vInner) Tip)
else return (Bin 2 p vOuter Tip (singleton q vInner))
| otherwise = do
-- This assumes a balance factor of delta = 3
let upper = (3*(n - 1)) `quot` 4
let lower = (n + 2) `quot` 4
ln <- liftGen $ choose (lower, upper)
let rn = n - ln - 1
liftM4 (\lt x v rt -> Bin n x v lt rt) (mkArb step ln) step (liftGen arbitrary) (mkArb step rn)

-- A type with a peculiar Eq instance designed to make sure keys
-- come from where they're supposed to.
data OddEq a = OddEq a Bool deriving (Show)
Expand Down
Loading

0 comments on commit b6fee41

Please sign in to comment.