This repository is the official implementation for Spatio-Temporal Tuples Transformer for Skeleton-Based Action Recognition.
- NTU RGB+D 60 Skeleton
- NTU RGB+D 120 Skeleton
- Request dataset here: https://rose1.ntu.edu.sg/dataset/actionRecognition/
- Download the skeleton-only datasets:
nturgbd_skeletons_s001_to_s017.zip
(NTU RGB+D 60)nturgbd_skeletons_s018_to_s032.zip
(NTU RGB+D 120)- Extract above files to
./gendata/nturgbd_raw
Put downloaded data into the following directory structure:
- gendata/
- ntu/
- ntu120/
- nturgbd_raw/
- nturgb+d_skeletons/ # from `nturgbd_skeletons_s001_to_s017.zip`
...
- nturgb+d_skeletons120/ # from `nturgbd_skeletons_s018_to_s032.zip`
...
- Generate NTU RGB+D 60 or NTU RGB+D 120 dataset:
cd ./gendata/ntu # or cd ./gendata/ntu120
# Get skeleton of each performer
python3 get_raw_skes_data.py
# Remove the bad skeleton
python3 get_raw_denoised_data.py
# Transform the skeleton to the center of the first frame
python3 seq_transformation.py
-
Change the config file depending on what you want.
-
To train model on NTU RGB+D 60/120 with joint, bone or motion modalities, run the following command.
# Example: training STTFormer on NTU RGB+D 60 cross subject under bone modality
python3 main.py --config config/ntu60_xsub_bone.yaml
- To test the trained models saved in <work_dir>, run the following command:
# Example: testing STTFormer on NTU RGB+D 60 cross subject under bone modality
python3 main.py --config config/ntu60_xsub_bone.yaml --run_mode test --save_score True --weights work_dir/ntu60/xsub_bone/xsub_bone.pt
As with training, it should be noted that the data modality should correspond to the weight.
- To ensemble the results of different modalities, run
# Example: ensemble three modalities of STTFormer on NTU RGB+D 60 cross subject
python3 ensemble.py --dataset ntu/xsub --joint_dir work_dir/ntu60/xsub_joint --bone_dir work_dir/ntu60/xsub_bone --joint_motion_dir work_dir/ntu60/xsub_joint_motion
- The pretrained models will be available soon.
This repository is based on CTR-GCN. Thanks to the original authors for their work!
Please cite this work if you find it useful:.
@article{Qiu2022SpatioTemporalTT,
title={Spatio-Temporal Tuples Transformer for Skeleton-Based Action Recognition},
author={Helei Qiu and Biao Hou and Bo Ren and Xiaohua Zhang},
journal={ArXiv},
year={2022},
volume={abs/2201.02849}
}