The Helium Gateway application is a service designed to run on Linux-based LoRaWAN gateways.
It's intended to run alongside a typical LoRa packet forwarder and to connect via Semtech's Gateway Messaging Protocol (GWMP, using JSON v1 or v2).
In turn, the Helium Gateway application does two things:
- fetches blockchain context, such as routing tables and OUI endpoints, from a
Gateway Service
; this means the application does not need to maintain a full ledger of copy of the blockchain - connects and routes packets to the appropriates OUI endpoints (ie:
Helium Routers
)
+-----------+
+-----------+ +------------+ | Gateway |
| | | |<--- gRPC ---->| Service |
| packet |<--- Semtech GWMP ---->| Helium | +-----------+
| forwarder | over UDP | Gateway | +-----------+
| | | |<--- gRPC ---->| Helium |
+-----------+ +------------+ | Routers |
+-----------+
The current gateway project forwards packets to the router via state channels and is eligible for data rewards only. Proof of coverage is not yet possible.
The project builds ipk
and deb
packaged releases for Linux-based LoRa gateways. These packages attempt to be self-updating to be able to track improvements to the service. Updates are delivered through the following channels which a gateway can subscribe to by a channel
setting in the update
section of the settings file:
- alpha - Early development releases. These will happen frequently as functionality is developed and may be unstable. Expect to need to log into your gateway to restart or manually fix your light gateway.
- beta - Pre-release candidates which are considered to be stable enough for early access. Breaking issues can still happen but should be rare.
- release - The main release channel. Updates are considered to be stable for all platforms.
- semver - This is the default channel and selects the channel based on the installed package version identifier.
NOTE: Gateways should have at least 16Mb of available application file space to handle gateway installation and updates.
This application requires a Linux-based environment for two big reasons:
tokio
: thegateway-rs
application, written in Rust, depends on Tokio for its runtime. Tokio binds to Linux interfaces such asepoll
andkqeueue
. It is technically possible to port Tokio to another OS or RTOS (this has been done for Windows), but it would be no simple undertaking.curl
: for fetching releases over SSL,curl
is used. This was a simple way to use SSL without bloating thehelium_gateway
binary with additional libraries. Note that the updater may be disabled and thus this dependency may be removed.
If your supported LoRa gateway did not come with helium-gateway pre-installed, manual installation requires you to:
-
Configure the packet forwarder on the gateway to forward to the helium-gateway application. This varies per gateway but the goal is to set the packet forwarder to forward to the (default) configured helium-gateway on
127.0.0.1
at udp port1680
-
Set up ssh acccess to the gateway. Depending on the gateway that may require going through a web interface, while others already have ssh configured.
-
scp
a downloaded release package for the supported platform to the gateway. e.g.scp helium-gateway-<version>-<platform>.ipk <gateway>:/tmp/
-
ssh
into the device and install the service using a command like:opkg install /tmp/helium-gateway-<version>-<platform>.ipk
or
dpkg --install /tmp/helium-gateway-<version>-<platform>.deb
NOTE: Some platform have custom package installation requirements. Refer to the developer instructions for that platform on how to install a package.
The default region of the gateway is
US915
, if your region is different you can set the right one in/etc/helium_gateway/settings.toml
. Just add the following line at the beginning of the file:region = "<region>"
Possible values are :
US915| EU868 | EU433 | CN470 | CN779 | AU915 | AS923_1 | AS923_2 | AS923_3 | AS923_4 | KR920 | IN865
. After updating the value you need to restart the service :/etc/init.d/helium_gateway restart
If this command succeeds the logs on the gateway will show the service starting and the local packet forwarder client connecting to the gateway service.
The following platforms have already been tested by Helium and our community. Our plan is to test this on all relevant hardware platforms used by the Helium Network. If your preferred platform isn't listed yet, here's how to get it added.
- Review the open issues to see if it's already in progress. If not, file an issue.
- Join the
#gateway
channel on Helium Discord and let us know what platform we're missing.
Note that platforms will be tested much faster if you join the development process!
Platform | Target | Products |
---|---|---|
ramips_24kec | mipsel-unknown-linux-musl | ✅ RAK833 EVB Kit |
✅ RAK7258 (WisGate Edge Lite) | ||
❔ RAK7249 (WisGate Edge Max) | ||
✅ RAK7240 (WisGate Edge Prime) | ||
smartharvest | mipsel-unknown-linux-musl | ✅ Smart Harvest Instruments Light Gateway |
klkgw | armv7-unknown-linux-musleabihf | ✅ Kerlink Wirnet iFemtoCell Evolution |
dragino | mips-unknown-linux-musl | ✅ Dragino LPS8 |
❔ Dragino DLOS8 | ||
mtcdt | armv5te-unknown-linux-musleabi | ✅ Multitech Conduit MTCDT (mLinux) |
resiot | armv7-unknown-linux-gnueabihf | ✅ ResIOT X gateways resiot |
cotx | aarch64-unknown-linux-gnu | ✅ Cotx gateways cotx |
x86_64 | x86_64-unknown-linux-gnu | ✅ Debian x86_64 |
raspi01 | arm-unknown-linux-gnueabihf | ✅ Raspberry Pi 0 or 1 running Raspian / Raspberry Pi OS or another Debian-based Linux distro |
raspi234 | armv7-unknown-linux-gnueabihf | ✅ Raspberry Pi 2, 3, or 4 running Raspian / Raspberry Pi OS or another Debian-based Linux distro |
raspi_64 | aarch64-unknown-linux-gnu | ✅ Raspberry Pi 3 or 4 running Raspian / Raspberry Pi OS 64 bit or another 64 bit Debian-based Linux distro |
Use one of the existing releases if you can, or build your own by hand using the instructions below.
If you want to support a new platform, please consider submitting a PR to get the package as part of the supported matrix of gateway platforms!
- Install
rust
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
- Install cargo
cross
,cargo-make
, and, if needed,cargo-deb
. Thecross
command allows for cross compiling to hardware targets using docker images, while thecargo-make
command is used to package up. If creating a deb package,cargo-deb
is also needed.cargo install cross cargo install cargo-make cargo install cargo-deb
- Build the application or package using one of the following:
-
Build the application binary using the target triplet from the supported targets. Note the use of the
--release
flag to optimize the target binary for size. Debug builds may be to large to run on some targets.cross build --target <target> --release
The resulting application binary is located in
target/<target>/release/helium_gateway
-
Build an application package using one of the target system profile names
cargo make --profile <platform> pkg
The resulting
ipk
ordeb
will be located intarget/ipk/helium-gateway-<version>-<platform>.<ipk or deb>
-
The Helium Gateway application can be configured to suit your hardware/software environment in a variety of ways - either from the command line, using customizations to the settings.toml
file or with environment variables. The following sections describe this functionality in more detail as well as more general information on how to use the application.
The Helium Gateway application is configured using TOML files for your settings. The defaults can be found in the default.toml file in this repo. You should not edit this file directly, rather you should create a settings.toml
file and store it either at the default expected locaton /etc/helium_gateway/settings.toml
or at a custom location of your choosing by passing the -c
flag to the helium_gateway
application as shown below in the general usage section.
You can customize any of the fields shown in the default.toml file, however it is important to make sure that when editing you maintain the same ordering as shown in the default file. You do not need to include all fields in the settings.toml
file - only the ones you want to change from default values - however maintaining the correct sections is highly recommended to avoid any unexpected behaviour.
For example, this config will not work correctly as it all ends up in the update
section:
[update]
platform = "ramips_24kec"
[log]
method = "stdio"
level = "info"
timestamp = false
region = "EU868"
Whereas this one will:
region = "EU868"
[log]
method = "stdio"
level = "info"
timestamp = false
[update]
platform = "ramips_24kec"
By maintaining the same layout as the default.toml
file you can avoid any unexpected errors.
The following are the settings that can be changed and their default and optional values:
# can be any file location where you store the gateway_key.bin file
keypair = "/etc/helium_gateway/gateway_key.bin"
# can be any ip address and port combination
listen_addr = "127.0.0.1:1680"
# possible values are : US915| EU868 | EU433 | CN470 | CN779 | AU915 | AS923_1 | AS923_2 | AS923_3 | AS923_4 | KR920 | IN865
region = "US915"
[log]
# either stdio or syslog
method = "stdio"
# possible values are: debug | info | warn
level = "info"
# either true or false
timestamp = false
[update]
# either true or false
enabled = true
# this setting must be overriden to get updates. choose from the supported platforms listed here https://github.com/helium/gateway-rs#supported-platforms
platform = "unknown"
# update channel to use: alpha | beta | release | semver - more details can be found at https://github.com/helium/gateway-rs#releases
channel = "semver"
# Interval in minutes between update checks
interval = 10
# The github release stream to check for updates
uri = "https://api.github.com/repos/helium/gateway-rs/releases"
# The command to run to install the update.
command = "/etc/helium_gateway/install_update"
[cache]
# The location of the cache store for the great gateway service
store = "/etc/helium_gateway/cache"
The default gateways / router uri
and pubkey
parameters can be changed, but this is only if you are using non-Helium routers. For general use with Helium you should leave these the same.
If your gateway is enabled with an ECC608 crypto chip which is set up correctly, you can configure helium_gateway to use the crypto chip for secure key storage and crypto operations.
To use in your settings.toml
override the keypair
setting to reflect the use of the ECC and specify the bus address and slot to use. For example:
keypair = "ecc://i2c-1:96&slot=0"
will have helium_gateway use the ECC at the /dev/i2c-1
device driver location, use bus address 96
(which is hex 0x60
) and slot 0
for it's crypto operations. Note that the file based keypair will no longer be used once the ECC is configured for use.
See the gateway-mfr-rs repo for instructions on configuring, locking, and testing an ECC chip.
Instead of overriding paramaters in the default.toml file using a settings.toml
file as described above, you can instead use environment variables. The environment variable name will be the same name as the entries in the settings file in uppercase and prefixed with "GW_". For example, following on from the above example where we change the region using region = "EU868"
in the settings file, setting an environment variable of GW_REGION="EU868"
will override the region setting. If the settings are in one of the lower sections such as the [update]
or [log]
sections then you need to also include that in the environment variable name such as GW_LOG_LEVEL
or GW_UPDATE_PLATFORM
.
The settings are loaded first from default.toml
, then from a settings.toml
file, and then from environment variables and any duplicates are overriden in the order. Therefore, please note that if you have a setting in all three locations, the environment variable will override the settings in the other two locations.
Using the Helium Gateway application is pretty simple, and the vast majority of the information you will need to use it can be gleaned by using the --help
flag which provides the following output:
Helium Light Gateway
USAGE:
helium_gateway [FLAGS] [OPTIONS] <SUBCOMMAND>
FLAGS:
--daemon Daemonize the application
-h, --help Prints help information
-V, --version Prints version information
OPTIONS:
-c <config> Configuration folder to use. default.toml will be loaded first and any custom settings in
settings.toml merged in [default: /etc/helium_gateway]
SUBCOMMANDS:
add Construct an add gateway transaction for this gateway
help Prints this message or the help of the given subcommand(s)
key Commands on gateway keys
server Run the gateway service
update Commands for gateway updates
As you can see, apart from the help
command, there are four core subcommands that you can pass: add
, key
, server
and update
. The descriptions of what these subcommands do is shown in brief in the above help output, and are explained in more detail in the sections below.
The only option available is the config
option using the -c
flag. This tells the application where your configuration file is located and can be used as follows whilst passing any of the other commands such as server
or add
(default is /etc/helium_gateway
):
./helium_gateway -c /location/of/config/folder server
Lastly you can check the version, read the help information or daemonize the application using the --version
, --help
and --daemon
flags respectively.
As shown in the help output below, this subcommand is used to construct an add gateway transaction which can subsequently be used with the Helium Wallet application to onboard the gateway to the blockchain. More infomation on this process can be found on the docs article for Data Only Hotspots.
Construct an add gateway transaction for this gateway
USAGE:
helium_gateway add [OPTIONS] --owner <owner> --payer <payer>
FLAGS:
-h, --help Prints help information
-V, --version Prints version information
OPTIONS:
--mode <mode> The staking mode for adding the light gateway [default: dataonly]
--owner <owner> The target owner account of this gateway
--payer <payer> The account that will pay account for this addition
So for example, to construct an add gateway transaction you would enter the following command at the terminal:
./helium_gateway add --owner WALLET_ADDRESS --payer WALLET_ADDRESS
You need to substitute WALLET_ADDRESS for the wallet address you will use for the owner of the hotspot and the payer of the transaction fees respectively...but please note that the --payer
address must be the same as the one you will use to submit the transaction to the blockchain, or the transaction will fail.
The output of this command is a JSON object which looks like the following:
{
"address": "11TL62V8NYvSTXmV5CZCjaucskvNR1Fdar1Pg4Hzmzk5tk2JBac",
"fee": 65000,
"mode": "dataonly",
"owner": "14GWyFj9FjLHzoN3aX7Tq7PL6fEg4dfWPY8CrK8b9S5ZrcKDz6S",
"payer": "14GWyFj9FjLHzoN3aX7Tq7PL6fEg4dfWPY8CrK8b9S5ZrcKDz6S",
"staking fee": 1000000,
"txn": "CrkBCiEBrlImpYLbJ0z0hw5b4g9isRyPrgbXs9X+RrJ4pJJc9MkSIQA7yIy7F+9oPYCTmDz+v782GMJ4AC+jM+VfjvUgAHflWSJGMEQCIGfugfLkXv23vJcfwPYjLlMyzYhKp+Rg8B2YKwnsDHaUAiASkdxUO4fdS33D7vyid8Tulizo9SLEL1lduyvda9YVRCohAa5SJqWC2ydM9IcOW+IPYrEcj64G17PV/kayeKSSXPTJOMCEPUDo+wM="
}
You can also pass a --mode
flag followed by the hotspot type (dataonly | light | full
) as shown below:
./helium_gateway add --owner WALLET_ADDRESS --payer WALLET_ADDRESS --mode light
The output of this command will be mostly the same as if you used the default dataonly
however you will see that the mode has changed to "mode": "light",
and the staking fee amount has changed to "staking fee": 4000000
.
The txn field from the JSON object needs to be used as the input to the wallet command helium-wallet hotspot add
when you subsequently want to add it to the blockchain. For example, using the above JSON object as an example, you would use the following command:
helium-wallet hotspots add CrkBCiEBrlImpYLbJ0z0hw5b4g9isRyPrgbXs9X+RrJ4pJJc9MkSIQA7yIy7F+9oPYCTmDz+v782GMJ4AC+jM+VfjvUgAHflWSJGMEQCIGfugfLkXv23vJcfwPYjLlMyzYhKp+Rg8B2YKwnsDHaUAiASkdxUO4fdS33D7vyid8Tulizo9SLEL1lduyvda9YVRCohAa5SJqWC2ydM9IcOW+IPYrEcj64G17PV/kayeKSSXPTJOMCEPUDo+wM=
This subcommand can be used to get the address and animal name of the gateway from the keys file as shown in the help output below. Note that the helium_gateway server has to be running for this command to work.
Commands on gateway keys
USAGE:
helium_gateway key <SUBCOMMAND>
FLAGS:
-h, --help Prints help information
-V, --version Prints version information
SUBCOMMANDS:
help Prints this message or the help of the given subcommand(s)
info Commands on gateway keys
Using this is as simple as passing the following command in a terminal from wherever you installed the helium_gateway
application:
./helium_gateway key info
The output of this is a JSON object containing the address and animal name of the hotspot as shown below:
{
"address": "11TL62V8NYvSTXmV5CZCjaucskvNR1Fdar1Pg4Hzmzk5tk2JBac",
"name": "wide-neon-kestrel"
}
The gateway server subcommand is used to start the gateway service on your device.
Run the gateway service
USAGE:
helium_gateway server
FLAGS:
-h, --help Prints help information
-V, --version Prints version information
Running it is as simple as:
./helium_gateway server
However as discussed above you can also pass the -c
option to tell the service that you are using a different location for your config files:
./helium_gateway -c /location/of/config/folder server
The gateway update subcommand pretty much does what it says on the tin - it is used to update the software version of the gateway. You can see the help output for this command shown below.
Commands for gateway updates
USAGE:
helium_gateway update <SUBCOMMAND>
FLAGS:
-h, --help Prints help information
-V, --version Prints version information
SUBCOMMANDS:
download Download an updates. This does not install the update
help Prints this message or the help of the given subcommand(s)
list List available updates
As you can see from the help output, there are essentially two functions of the update
command - to list available updates and to download an update.
For basic usage of the list
function you can simply use:
./helium_gateway update list
And this will give you an output similar to the following:
1.0.0-alpha.10
1.0.0-alpha.13 (*)
1.0.0-alpha.12
1.0.0-alpha.11
1.0.0-alpha.9
1.0.0-alpha.8
This takes the default update channel and platform from your environment variables, settings.toml
or default.toml
depending on whether you have set any overrides or not. The list will default to a total of 10 update versions, unless you pass a flag to tell it to output a different amount. However, if you want to be more specific you can use something like the following:
./helium_gateway update list --channel <channel> --platform <platform> -n <count>
Where:
<channel>
is the channel to list updates for (alpha | beta | release | semver - more details can be found here - defaults to 'update.channel' setting)<count>
is the number of update entries to list (defaults to 10)<platform>
is the platform to list entries for (choose from the supported platforms listed here - defaults to 'update.platform' setting)
Lastly, we have the download
function which can be used as follows:
./helium_gateway update download --path <path> <version>
Where:
<path>
is the directory path to download the update to (defaults to your current directory)<version>
is the version you want to update to (which can be found from the list command described above - there is no default, so the version must be passed or this command will fail)