Diploma thesis about the Heston SV Model, theoretical and realized moments & pdf expansion methods
Titel-Ideen:
- Evaluating Expansion Methods for Realized Moments in Heston Model Simulations
- Comparative Analysis of Expansion Methods for Realized Moments in Heston Model Simulations
Heston Process (
-
$S_t$ price -
$\mu$ drift -
$v_t$ variance -
$\kappa$ speed of mean reversion -
$\theta$ long-term-variance -
$\sigma$ volatility of variance -
$W_t^S$ ,$W_t^v$ Wiener Processes
From Heston Process are already known (add citations):
- theoretical moments
- theoretical distribution
- theoretical quantiles
For log-returns
"Simulating the Cox–Ingersoll–Ross and Heston processes: matching the first four moments": log-return
- unconditional noncentral moments of
$r_t$ are$\mu_i$ 's- mean
$\mu_1 = \left(\mu - \frac{\theta}{2}\right)t$ - variance
$\mu_2 = \frac{1}{4\kappa^3}\left(\exp(-\kappa t)\left[\exp(\kappa t)\left\lbrace\kappa^3 t(t(\theta-2\mu)^2 + 4\theta) - 4\kappa^2\rho\sigma t\theta + \kappa\rho\sigma(4\rho + \sigma t) - \sigma^2\theta\right\rbrace + \sigma\theta(\sigma-4\kappa\rho)\right]\right)$ -
$\mu_3$ and$\mu_4$ are more complicated
- mean
- unconditional central moments of
$r_t$ are$\zeta_i$ 's
Cumulants of
Zhao et al 2013: Variance of
Moments of
$\mathbb{E}(Q_{t+1})=\mu_1=1+r$ $\mathbb{E}(Q_{t+1}^2)=\mu_2=(r+1)^2+\theta$ $\mathbb{E}(Q_{t+1}^3)=\mu_3=(r+1)^3+3\theta+3r\theta$ -
$\mathbb{E}(Q_{t+1}^4)=\mu_4=\frac{1}{k(k-2)}(k^2r^4+4k^2r^3+6k^2r^2\theta+ \dots)$
Moments of
both papers use Mathematica to get exact formulas, and suggest using characteristic function
- Wikipedia: If a random variable
$X$ has moments up to$k$ -th order, then the characteristic function$\phi_X$ is$k$ times continuously differentiable on the entire real line. In this case$\mathbb{E}(X^k)=i^{-k}\phi_X^{(k)}(0)$
Simulation of the process with discretisation gives realised moments (Haozhen works on that) and realised quantiles
Realised Moments + Expansion Method
- which expansion method works best?
Gram-Charlier-Expansion Type A ("Gram-Charlier densities", original paper: "Ueber die Entwickelung reeller Functionen in Reihen mittelst der Methode der kleinsten Quadrate.")
-
$\phi(x)$ pdf of standardized normal distribution (zero mean, unit variance) $p_n(x) = 1 + \frac{\gamma_1}{6}He_3(x) + \frac{\gamma_2}{24}He_4(x)$ -
$\gamma_1$ skewness -
$\gamma_2$ excess kurtosis $He_3(x) = x^3-3x$ $He_4(x) = x^4-6x^2+3$
Edgeworth-Expansion ("Gram-Charlier densities", original paper: "On the Representation of Statistical Frequency by a Series")
-
$\phi(x)$ pdf of standardized normal distribution (zero mean, unit variance) $p_n(x) = 1 + \frac{\gamma_1}{6}He_3(x) + \frac{\gamma_2}{24}He_4(x) + \frac{\gamma_1^2}{72}He_6(x)$ -
$\gamma_1$ skewness -
$\gamma_2$ excess kurtosis $He_3(x) = x^3-3x$ $He_4(x) = x^4-6x^2+3$ $He_6(x) = x^6-15x^4+45x^2-15$
There might be problems with positivity of
- only in region
$AM_1BM_2A$ Gram-Charlier-Expansion is positive for every$x$ - validity of the Cornish–Fisher case is much wider than in the Gram–Charlier case ("Option Pricing Under Skewness and Kurtosis Using a Cornish–Fisher Expansion")
Saddlepoint Approximation (original paper: "Saddlepoint Approximations in Statistics", "Saddlepoint Approximations with Applications")
-
$K(\cdot)$ cumulant generating function -
$K''(\cdot)$ second derivative of$K(\cdot)$ -
$s$ saddlepoint, solution of$K'(s)=x$
To get the cumulant generating function, we do a taylor expansion of
-
$\kappa_1$ mean -
$\kappa_2$ variance -
$\kappa_3$ skewness -
$\kappa_4$ excess kurtosis
Comparing realised moments and theoretical moments was done by Neuberger & Payne (2021)
- with short term skew + kurtosis, long term skew and kurtosis are precisely estimatable