Skip to content

henrylao/kaggle-titanic

Repository files navigation

Kaggle Titanic Flask App

Deployment of a machine learning model trained on Kaggle's Titanic dataset as a Flask app hosted on Heroku.

Overview

Dataset: https://www.kaggle.com/c/titanic

Installation

  1. Clone the repository
git clone https://github.com/henrylao/kaggle-titanic.git
  1. Create the virtual environment in project root directory

Windows:

python -m venv c:\path\to\myenv

MacOS/Linux:

python -m venv path/to/project/myenv
  1. Activate the virtual environment

Windows:

path\to\project\myenv\Scripts\activate

MacOS/Linux

source path/to/project/myvenv/activate
  1. Install package dependencies

Run one of the following:

pip install -r requirements.txt
pip3 install -r requirements.txt

REST API Server Startup

  1. Ensure installation of dependencies from the installation section and activation of the virtual environment.
  2. Navigate to the server directory.
cd path/to/project/kaggle-titanic/
  1. Run the server driver app.py

Windows/Linux

python app.py

MacOS

python3 app.py

Milestones

Model API + Data Pipelining:

  • loading data / existing model binaries
  • preprocess data

REST API:

  • Complete creation of REST API endpoint for LGBM model
    • Create POST method for handling a request
    • Create a method of configuring the model to be loaded (Ex. dzone, oos, etc)
  • Complete migration of model application to be deployed using Docker
  • Complete method for persisting configurations of models deployed
  • Completed refactoring of codebase for OOP
  • Complete testing for operating systems:
    • Windows 10
    • Linux
    • MacOS
  • Refactor server.driver.py to be a controller stored in the server.controller package

Website

  • Support for displaying different singular models
  • Comparison of pycaret models vs self-configured
  • Add footer routing to internet accounts + contact info

Documentation

  • Model and data used
  • Website design docs

Stretch

  • Add

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published