Skip to content

Commit

Permalink
Add beta, exponential and karras sigmas to FlowMatchEuler
Browse files Browse the repository at this point in the history
  • Loading branch information
hlky committed Nov 24, 2024
1 parent 7ac6e28 commit 3319bc5
Showing 1 changed file with 105 additions and 2 deletions.
107 changes: 105 additions & 2 deletions src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,10 +20,13 @@
import torch

from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, logging
from ..utils import BaseOutput, is_scipy_available, logging
from .scheduling_utils import SchedulerMixin


if is_scipy_available():
import scipy.stats

logger = logging.get_logger(__name__) # pylint: disable=invalid-name


Expand Down Expand Up @@ -72,7 +75,16 @@ def __init__(
base_image_seq_len: Optional[int] = 256,
max_image_seq_len: Optional[int] = 4096,
invert_sigmas: bool = False,
use_karras_sigmas: Optional[bool] = False,
use_exponential_sigmas: Optional[bool] = False,
use_beta_sigmas: Optional[bool] = False,
):
if self.config.use_beta_sigmas and not is_scipy_available():
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
raise ValueError(
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
)
timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy()
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32)

Expand Down Expand Up @@ -185,12 +197,14 @@ def set_timesteps(
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
"""
if num_inference_steps is None:
num_inference_steps = len(sigmas) - 1
self.num_inference_steps = num_inference_steps

if self.config.use_dynamic_shifting and mu is None:
raise ValueError(" you have a pass a value for `mu` when `use_dynamic_shifting` is set to be `True`")

if sigmas is None:
self.num_inference_steps = num_inference_steps
timesteps = np.linspace(
self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps
)
Expand All @@ -202,6 +216,15 @@ def set_timesteps(
else:
sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas)

if self.config.use_karras_sigmas:
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=len(sigmas))

elif self.config.use_exponential_sigmas:
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=len(sigmas))

elif self.config.use_beta_sigmas:
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=len(sigmas))

sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
timesteps = sigmas * self.config.num_train_timesteps

Expand Down Expand Up @@ -314,5 +337,85 @@ def step(

return FlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample)

# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
"""Constructs the noise schedule of Karras et al. (2022)."""

# Hack to make sure that other schedulers which copy this function don't break
# TODO: Add this logic to the other schedulers
if hasattr(self.config, "sigma_min"):
sigma_min = self.config.sigma_min
else:
sigma_min = None

if hasattr(self.config, "sigma_max"):
sigma_max = self.config.sigma_max
else:
sigma_max = None

sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

rho = 7.0 # 7.0 is the value used in the paper
ramp = np.linspace(0, 1, num_inference_steps)
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas

# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
"""Constructs an exponential noise schedule."""

# Hack to make sure that other schedulers which copy this function don't break
# TODO: Add this logic to the other schedulers
if hasattr(self.config, "sigma_min"):
sigma_min = self.config.sigma_min
else:
sigma_min = None

if hasattr(self.config, "sigma_max"):
sigma_max = self.config.sigma_max
else:
sigma_max = None

sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
return sigmas

# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
def _convert_to_beta(
self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
) -> torch.Tensor:
"""From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""

# Hack to make sure that other schedulers which copy this function don't break
# TODO: Add this logic to the other schedulers
if hasattr(self.config, "sigma_min"):
sigma_min = self.config.sigma_min
else:
sigma_min = None

if hasattr(self.config, "sigma_max"):
sigma_max = self.config.sigma_max
else:
sigma_max = None

sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

sigmas = np.array(
[
sigma_min + (ppf * (sigma_max - sigma_min))
for ppf in [
scipy.stats.beta.ppf(timestep, alpha, beta)
for timestep in 1 - np.linspace(0, 1, num_inference_steps)
]
]
)
return sigmas

def __len__(self):
return self.config.num_train_timesteps

0 comments on commit 3319bc5

Please sign in to comment.