-
-
Notifications
You must be signed in to change notification settings - Fork 110
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Support datashade points hover #1430
base: main
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change | ||||||
---|---|---|---|---|---|---|---|---|
|
@@ -45,7 +45,7 @@ | |||||||
from holoviews.plotting.bokeh import OverlayPlot, colormap_generator | ||||||||
from holoviews.plotting.util import process_cmap | ||||||||
from holoviews.operation import histogram, apply_when | ||||||||
from holoviews.streams import Buffer, Pipe | ||||||||
from holoviews.streams import Buffer, Pipe, Tap, PointerXY | ||||||||
from holoviews.util.transform import dim, lon_lat_to_easting_northing | ||||||||
from pandas import DatetimeIndex, MultiIndex | ||||||||
|
||||||||
|
@@ -842,13 +842,22 @@ def __init__( | |||||||
if kind == 'errorbars': | ||||||||
hover = False | ||||||||
elif hover is None: | ||||||||
hover = not self.datashade | ||||||||
hover = True | ||||||||
|
||||||||
if hover and not any( | ||||||||
t for t in tools if isinstance(t, HoverTool) or t in ['hover', 'vline', 'hline'] | ||||||||
): | ||||||||
if hover in {'vline', 'hline'}: | ||||||||
plot_opts['hover_mode'] = hover | ||||||||
tools.append('hover') | ||||||||
self.hover_mode = hover | ||||||||
else: | ||||||||
self.hover_mode = 'mouse' | ||||||||
if not self.datashade: | ||||||||
tools.append('hover') | ||||||||
|
||||||||
self.hover = bool(hover) | ||||||||
self.hover_tooltips = hover_tooltips | ||||||||
self.hover_formatters = hover_formatters | ||||||||
if 'hover' in tools: | ||||||||
if hover_tooltips: | ||||||||
plot_opts['hover_tooltips'] = hover_tooltips | ||||||||
|
@@ -1760,7 +1769,7 @@ def method_wrapper(ds, x, y): | |||||||
return layers | ||||||||
|
||||||||
import_datashader() | ||||||||
from holoviews.operation.datashader import datashade, rasterize, dynspread | ||||||||
from holoviews.operation.datashader import datashade, rasterize, dynspread, inspect_points | ||||||||
|
||||||||
categorical, agg = self._process_categorical_datashader() | ||||||||
if agg: | ||||||||
|
@@ -1819,11 +1828,94 @@ def method_wrapper(ds, x, y): | |||||||
threshold=self.kwds.get('threshold', 0.5), | ||||||||
) | ||||||||
|
||||||||
# a workaround to show hover info for datashaded points | ||||||||
if self.hover and self.datashade and self.kind == 'points': | ||||||||
if self.hover_mode != 'mouse': | ||||||||
param.main.param.warning( | ||||||||
f'Got unsupported hover_mode={self.hover_mode!r} for ' | ||||||||
f"datashaded points; reverting to 'mouse'." | ||||||||
) | ||||||||
|
||||||||
stream = PointerXY | ||||||||
if len(self.data) > 10000: | ||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I am not a fan of these magic numbers, with no way to change it. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Yes allowing changing that value is a good improvement. I wouldn't add that to the signature though, maybe just as a very explicitly named kwarg that is caught there if defined, and defaults to 10000 if not. |
||||||||
stream = Tap | ||||||||
param.main.param.warning( | ||||||||
'Hovering over datashaded points is slow for large datasets; ' | ||||||||
'tap on the plot to see a hover tooltip over desired point.' | ||||||||
) | ||||||||
|
||||||||
inspector = inspect_points.instance( | ||||||||
streams=[stream], transform=self._datashade_hover_transform | ||||||||
) | ||||||||
processed *= inspector(processed).opts( | ||||||||
size=10, | ||||||||
alpha=0, | ||||||||
tools=['hover'], | ||||||||
hover_mode=self.hover_mode, | ||||||||
hover_tooltips=self.hover_tooltips, | ||||||||
hover_formatters=self.hover_formatters, | ||||||||
) | ||||||||
|
||||||||
opts = filter_opts(eltype, dict(self._plot_opts, **style), backend='bokeh') | ||||||||
layers = self._apply_layers(processed).opts(eltype, **opts, backend='bokeh') | ||||||||
layers = _transfer_opts_cur_backend(layers) | ||||||||
return layers | ||||||||
|
||||||||
def _datashade_hover_transform(self, df): | ||||||||
if not len(df): | ||||||||
return df | ||||||||
|
||||||||
# show at least the x and y columns | ||||||||
cols = self.hover_cols.copy() | ||||||||
if self.x not in cols: | ||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Is |
||||||||
cols.append(self.x) | ||||||||
if self.y not in cols: | ||||||||
cols.append(self.y) | ||||||||
|
||||||||
# handle aggregator, e.g. ds.sum('column') or ds.count_cat('column') | ||||||||
agg_col = None | ||||||||
agg_series_map = {} | ||||||||
if self.aggregator and not isinstance(self.aggregator, str) and self.aggregator.column: | ||||||||
agg_col = self.aggregator.column | ||||||||
agg_op = type(self.aggregator).__name__ | ||||||||
if hasattr(df, agg_op): # df.sum/df.count | ||||||||
agg_value = df.agg({agg_col: agg_op}) | ||||||||
elif agg_op == 'count_cat': | ||||||||
agg_value = df[agg_col].value_counts() | ||||||||
|
||||||||
if agg_col in cols: | ||||||||
cols.remove(agg_col) | ||||||||
else: | ||||||||
key = 'Count' | ||||||||
for i in range(1, 10): | ||||||||
if key in df.columns: | ||||||||
key = f'Count_{i}' | ||||||||
else: | ||||||||
break | ||||||||
Comment on lines
+1890
to
+1894
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This looks weird to me There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. What's weird about it? It's deduplicating columns; do you have a suggestion for an alternative? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Why 10? I can't wrap my head around what the code does. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Just about any scalar value other than 0 or 1 should be documented very clearly, usually by making a Parameter or at least attribute declaration with a meaningful name and associated docstring. |
||||||||
agg_value = pd.Series([len(df)], index=[key]) | ||||||||
|
||||||||
# take the mean of numeric columns | ||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Is the rest of the method generated with AI? If so, please clearly state so. Otherwise, please explain why you take the mean. In general, comments should not explain what is done but why it is done. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. No it's not AI. I decided to add comments since the code was getting chunky, and easier to navigate English, especially since I use the exclude keyword for object columns instead of include keyword (had to do a double take that when I was rereading my code), and I wanted to highlight that.
Sometimes it's easier to read English than code and guidelines don't necessarily have to be followed all the time There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Sorry about that. It just had the structure of an AI output.
I agree, but the use of This can return an output that does not exist in the original DataFrame when more points are in the input DataFrame. For example, the two close points in your example will return 350 for the population when they are close to each other. Is this okay? Maybe, but you need to state that you have made this decision. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. |
||||||||
num_series = df[cols].select_dtypes(include=['number']).mean() | ||||||||
if len(num_series): | ||||||||
agg_series_map['number_cols'] = num_series | ||||||||
|
||||||||
# take the first value of object columns | ||||||||
obj_series = df[cols].select_dtypes(exclude=['number']).iloc[0] | ||||||||
if len(obj_series): | ||||||||
agg_series_map['object_cols'] = obj_series | ||||||||
|
||||||||
# to preserve order of other columns, add this last | ||||||||
agg_series_map[agg_col] = agg_value | ||||||||
|
||||||||
# concat all series into a single dataframe which has one row | ||||||||
df_hover = pd.concat(agg_series_map.values()).to_frame().transpose() | ||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This especially, without the comment, would be really confusing of what all the methods are doing. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Agree. But why is this needed? Why is a
Suggested change
At some point, a person could look at this line and remove |
||||||||
|
||||||||
# remove index if it wasn't in the original dataset | ||||||||
if 'index' not in self.data.columns: | ||||||||
df_hover = df_hover.drop(columns=['index'], errors='ignore') | ||||||||
|
||||||||
return df_hover | ||||||||
|
||||||||
def _resample_obj(self, operation, obj, opts): | ||||||||
def exceeds_resample_when(plot): | ||||||||
return len(plot) > self.resample_when | ||||||||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -8,7 +8,7 @@ | |
import pandas as pd | ||
import pytest | ||
|
||
from holoviews import Store, render | ||
from holoviews import Store, render, renderer | ||
from holoviews.element import Image, QuadMesh, Points | ||
from holoviews.core.spaces import DynamicMap | ||
from holoviews.core.overlay import Overlay | ||
|
@@ -156,11 +156,6 @@ def test_when_datashade_is_true_set_hover_to_false_by_default(self): | |
opts = Store.lookup_options('bokeh', plot[()], 'plot').kwargs | ||
assert 'hover' not in opts.get('tools') | ||
|
||
def test_when_datashade_is_true_hover_can_still_be_true(self): | ||
plot = self.df.hvplot(x='x', y='y', datashade=True, hover=True) | ||
opts = Store.lookup_options('bokeh', plot[()], 'plot').kwargs | ||
assert 'hover' in opts.get('tools') | ||
|
||
def test_xlim_affects_x_range(self): | ||
data = pd.DataFrame(np.random.randn(100).cumsum()) | ||
img = data.hvplot(xlim=(0, 20000), datashade=True, dynamic=False) | ||
|
@@ -324,6 +319,23 @@ def test_downsample_resample_when(self, kind, eltype): | |
assert isinstance(element, eltype) | ||
assert len(element) == 0 | ||
|
||
@parameterized.expand([(None,), (True,), ('vline',), ('hline',)]) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Do you think there'd be a way to avoid calling There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Many more tests will be needed to cover all the branches of the code introduced in the converter, these first two are a good start but they're very basic and just check whether the code doesn't error and the HoloViews type is the expected one. |
||
def test_include_inspect_point_hover(self, hover): | ||
df = pd.DataFrame( | ||
np.random.multivariate_normal((0, 0), [[0.1, 0.1], [0.1, 1.0]], (5000,)) | ||
).rename({0: 'x', 1: 'y'}, axis=1) | ||
|
||
p = df.hvplot.points(datashade=True, hover=hover) | ||
assert renderer('bokeh').get_plot(p).name.startswith('Overlay') | ||
|
||
def test_include_inspect_point_no_hover(self): | ||
df = pd.DataFrame( | ||
np.random.multivariate_normal((0, 0), [[0.1, 0.1], [0.1, 1.0]], (5000,)) | ||
).rename({0: 'x', 1: 'y'}, axis=1) | ||
|
||
p = df.hvplot.points(datashade=True, hover=False) | ||
assert renderer('bokeh').get_plot(p).name.startswith('RGB') | ||
|
||
|
||
class TestChart2D(ComparisonTestCase): | ||
def setUp(self): | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I'm not sure if hover should always be True.