-
Notifications
You must be signed in to change notification settings - Fork 106
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Update hf_prune.py #67
Open
aritralegndery
wants to merge
1
commit into
horseee:main
Choose a base branch
from
aritralegndery:patch-1
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Added Model on gpu
import os
import gc
import sys
import time
import json
import copy
import random
import argparse
from typing import Tuple
import torch
import numpy as np
from transformers import LlamaTokenizer, GenerationConfig, LlamaConfig
from LLMPruner.models.hf_llama.modeling_llama import LlamaForCausalLM, LlamaRMSNorm, LlamaAttention, LlamaMLP
import LLMPruner.torch_pruning as tp
from LLMPruner.pruner import hf_llama_pruner as llama_pruner
from LLMPruner.utils.logger import LoggerWithDepth
from LLMPruner.evaluator.ppl import PPLMetric
from LLMPruner.datasets.example_samples import get_examples
from LLMPruner.templates.prompts import prompts
def set_random_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def main(args):
set_random_seed(args.seed)
logger = LoggerWithDepth(
env_name="{}".format(args.save_ckpt_log_name),
config=args.__dict__,
root_dir='prune_log',
setup_sublogger=True
)
tokenizer = LlamaTokenizer.from_pretrained(args.base_model,device_map='auto')
model = LlamaForCausalLM.from_pretrained(
args.base_model,
low_cpu_mem_usage=True if args.torch_version >=1.9 else False,device_map="auto"
)
model.half()
if args.test_before_train:
logger.log("\n==================Generation Results before Pruning================\n")
model.eval()
with torch.no_grad():
for prompt in prompts:
input_ids = tokenizer(prompt, return_tensors="pt")['input_ids'].to(args.device)
generation_output = model.generate(
input_ids=input_ids,
do_sample=True,
top_k=50,
max_length=args.max_seq_len,
top_p=args.top_p,
temperature=args.temperature,
)
result = tokenizer.decode(generation_output[0])
logger.log(result)
ppl = PPLMetric(model, tokenizer, ['wikitext2', 'ptb'], args.max_seq_len, device=args.device)
logger.log("PPL before pruning: {}".format(ppl))
pruner_type = args.pruner_type.lower()
assert pruner_type in ['random', 'l2', 'l1', 'taylor']
for param in model.parameters():
param.requires_grad_(True)
before_pruning_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
forward_prompts = torch.tensor([
[ 1, 306, 4658, 278, 6593, 310, 2834, 338],
[ 1, 3439, 17632, 1925, 29892, 278, 6368, 310],
]).to(args.device) # Only for building the dependency graph. Any input will be fine since the computation result are not taken into consideration.
if pruner_type == 'random':
imp = tp.importance.RandomImportance()
elif pruner_type == 'l1':
imp = llama_pruner.MagnitudeImportance(p=1)
elif pruner_type == 'l2':
imp = llama_pruner.MagnitudeImportance(p=2)
elif pruner_type == 'taylor':
imp = llama_pruner.TaylorImportance(group_reduction=args.grouping_strategy, taylor=args.taylor)
else:
raise NotImplementedError
logger.log("Use {} pruner...".format(pruner_type))
if args.block_wise:
kwargs = {
"importance": imp,
"global_pruning": args.global_pruning,
"iterative_steps": args.iterative_steps,
"ch_sparsity": args.pruning_ratio,
"ignored_layers":[],
"channel_groups": {
},
"consecutive_groups": {
layer.self_attn.q_proj: layer.self_attn.head_dim for layer in model.model.layers
},
"customized_pruners": {
LlamaRMSNorm: llama_pruner.hf_rmsnorm_pruner,
},
"root_module_types": None,
"root_instances": [model.model.layers[i].self_attn.q_proj for i in range(args.block_attention_layer_start, args.block_attention_layer_end)] +
[model.model.layers[i].mlp.gate_proj for i in range(args.block_mlp_layer_start, args.block_mlp_layer_end)]
}
logger.log("Pruning Attention Layer = {}".format(list(range(args.block_attention_layer_start, args.block_attention_layer_end))))
logger.log("Pruning MLP Layer = {}".format(list(range(args.block_mlp_layer_start, args.block_mlp_layer_end))))
pruner = tp.pruner.MetaPruner(
model,
forward_prompts,
**kwargs
)
model.zero_grad()
logger.log("Start Pruning")
for i in range(args.iterative_steps):
if pruner_type in ['taylor']:
example_prompts = get_examples('bookcorpus', tokenizer, args.num_examples, seq_len = 64).to(args.device)
logger.log("Start Backwarding in iterative steps = {}...".format(i))
if args.taylor in ['param_mix', 'param_second']:
for j in range(args.num_examples):
batch_input = example_prompts[j].unsqueeze(0)
loss = model(batch_input, labels=batch_input).loss
logger.log("Loss = {}".format(loss))
loss.backward()
for module_param in model.parameters():
module_param.grad = module_param.grad * module_param.grad / args.num_examples
if hasattr(module_param, 'acc_grad'):
module_param.acc_grad += module_param.grad
else:
module_param.acc_grad = copy.deepcopy(module_param.grad)
model.zero_grad()
del loss.grad
loss = model(example_prompts, labels=example_prompts).loss
logger.log("Loss = {}".format(loss))
loss.backward()
pruner.step()
after_pruning_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
logger.log("After Iter {}/{}, #parameters: {}".format(i+1, args.iterative_steps, after_pruning_parameters))
# modify inferece-related attributes
for layer in model.model.layers:
layer.self_attn.num_heads = layer.self_attn.q_proj.weight.data.shape[0] // layer.self_attn.head_dim
# Clean the gradient in the model
model.zero_grad()
for name, module in model.named_parameters():
if 'weight' in name:
module.grad = None
del pruner
elif args.channel_wise:
kwargs = {
"importance": imp,
"global_pruning": args.global_pruning,
"iterative_steps": args.iterative_steps,
"ch_sparsity": args.pruning_ratio, # remove 50% channels, ResNet18 = {64, 128, 256, 512} => ResNet18_Half = {32, 64, 128, 256}
"ignored_layers":[],
#"round_to": model.config.num_attention_heads * 2,
"channel_groups": {
#layer.self_attn: layer.self_attn.num_heads for layer in model.model.layers
},
"customized_pruners": {
LlamaRMSNorm: llama_pruner.hf_rmsnorm_pruner,
#LlamaAttention: llama_pruner.hf_attention_pruner,
},
"root_module_types": [LlamaRMSNorm, LlamaAttention],
}
pruner = tp.pruner.MetaPruner(
model,
forward_prompts,
**kwargs
)
model.zero_grad()
logger.log("Start Pruning")
for i in range(args.iterative_steps):
if pruner_type in ['taylor']:
example_prompts = get_examples('bookcorpus', tokenizer, 10, seq_len = 64)
logger.log("Start Backwarding in iterative steps = {}...".format(i))
loss = model(example_prompts, labels=example_prompts).loss
logger.log("Loss = {}".format(loss))
loss.backward()
pruner.step()
after_pruning_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
logger.log("After Iter {}/{}, #parameters: {}".format(i+1, args.iterative_steps, after_pruning_parameters))
# Clean the gradient in the model
model.zero_grad()
for name, module in model.named_parameters():
if 'weight' in name:
module.grad = None
# modify inferece-related attributes
model.config.hidden_size = model.model.embed_tokens.weight.shape[1]
model.zero_grad()
del pruner
elif args.layer_wise:
model.model.layers = model.model.layers[:args.layer]
after_pruning_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
else:
raise NotImplementedError
logger.log("#Param before: {}, #Param after: {}, Ratio = {:.4f}%".format(before_pruning_parameters, after_pruning_parameters, 100.0*after_pruning_parameters/before_pruning_parameters))
gc.collect()
torch.cuda.empty_cache()
if args.save_model:
model.half()
torch.save({
'model': model,
'tokenizer': tokenizer,
}, logger.best_checkpoint_path)
if args.eval_device != "cpu":
model.half()
model.to(args.eval_device)
model.config.pad_token_id = tokenizer.pad_token_id = 0
model.config.bos_token_id = 1
model.config.eos_token_id = 2
if args.test_after_train:
logger.log("\n==================Generation Results After Pruning================\n")
model.eval()
with torch.no_grad():
for prompt in prompts:
input_ids = tokenizer(prompt, return_tensors="pt")['input_ids'].to(args.eval_device)
generation_output = model.generate(
input_ids=input_ids,
do_sample=True,
top_k=50,
max_length=args.max_seq_len,
top_p=args.top_p,
temperature=args.temperature,
)
result = tokenizer.decode(generation_output[0])
logger.log(result)
logger.log("\n==================Finish================\n")
ppl = PPLMetric(model, tokenizer, ['wikitext2', 'ptb'], args.max_seq_len, device=args.eval_device)
logger.log("PPL after pruning: {}".format(ppl))
logger.log("Memory Requirement: {} MiB\n".format(torch.cuda.memory_allocated()/1024/1024))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Pruning LLaMA (huggingface version)')
# argument for parsing
parser.add_argument('--base_model', type=str, default="decapoda-research/llama-7b-hf", help='base model name')
parser.add_argument('--save_ckpt_log_name', type=str, default="llama_prune", help='the path for save the checkpoint and the log. The final path would be log/{your_name_here}_{pruner_type}_{pruning_ratio}')
parser.add_argument('--pruning_ratio', type=float, default=0.5, help='pruning ratio')
parser.add_argument('--pruner_type', type=str, default='l2', help='pruner type')
# argument for generation
parser.add_argument('--temperature', type=float, default=1.0, help='temperature')
parser.add_argument('--top_p', type=float, default=0.95, help='top p')
parser.add_argument('--max_seq_len', type=int, default=128, help='max sequence length')
# argument for layer-wise pruning/column-wise pruning
parser.add_argument('--channel_wise', action='store_true', help='channel wise')
parser.add_argument('--block_wise', action='store_true', help='block wise')
parser.add_argument('--layer_wise', action='store_true', help='layer wise')
parser.add_argument('--layer', type=int, default=12, help='remain the previous n layers')
parser.add_argument('--block_attention_layer_start', type=int, help='start layer of block attention layers', default=3)
parser.add_argument('--block_attention_layer_end', type=int, help='end layer of block attention layers', default=31)
parser.add_argument('--block_mlp_layer_start', type=int, help='start layer of block mlp layers', default=3)
parser.add_argument('--block_mlp_layer_end', type=int, help='end layer of block mlp layers', default=31)
parser.add_argument('--iterative_steps', type=int, default=1, help="Iteration step for pruning. Default=1")
parser.add_argument('--grouping_strategy', type=str, default='sum', help='Reduce method for grouping')
parser.add_argument('--global_pruning', action='store_true', help='whether global pruning')
parser.add_argument('--taylor', type=str, default='param_first', help='choose from [vectorize, param_second, param_first, param_mix]')
parser.add_argument('--num_examples', type=int, default=10)
# general argument
parser.add_argument('--device', type=str, help='device')
parser.add_argument('--test_before_train', action='store_true', help='whether test before train')
parser.add_argument('--eval_device', type=str,help='eval device')
parser.add_argument('--test_after_train', action='store_true', help='whether test after train')
parser.add_argument('--seed', type=int, default=42, help='seed')
parser.add_argument('--save_model', action='store_true', help='if save model')
args = parser.parse_args()
torch_version = float('.'.join(torch.__version__.split('.')[:2]))
args.torch_version = torch_version
main(args) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Added Model on CUDA.